Tìm 2 số x và y biết (x-y)/3=(x-y)/13=(x*y)/200
1)Tìm 2 số x và y biết x/3=y/-2 và 2x+5y=-12
2) Tìm 2 số x và y biết x:y=4:5 và x-y =13
3) Tìm 2 số x và y biết 4x=7y và x-y=12
a, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{-2}=\frac{2x+5y}{2.3+5.\left(-2\right)}=-\frac{12}{-4}=3\)
\(x=-3;y=6\)
b, Theo bài ra ta có : \(x:y=4:5\Leftrightarrow\frac{x}{4}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{x-y}{4-5}=\frac{13}{-1}=-13\)
\(x=-52;y=-65\)
c, Theo bài ra ta có: \(4x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{y}{4}=\frac{x-y}{7-4}=\frac{12}{3}=4\)
\(x=28;y=16\)
tìm x, y biết
(x+y)/13=(x-y)/3=x*y/200
\(\dfrac{x+y}{13}\) = \(\dfrac{x-y}{3}\) = \(\dfrac{xy}{200}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{xy}{200}\) = \(\dfrac{x+y}{3}\) = \(\dfrac{x+y+x-y}{13+3}\) = \(\dfrac{2x}{16}\)
\(\dfrac{xy}{200}\) = \(\dfrac{2x}{16}\)
\(\dfrac{xy}{200}-\dfrac{2x}{16}\) = 0
\(x\) x (\(\dfrac{y}{200}\) - \(\dfrac{2}{16}\)) = 0
\(x\) = 0 hoặc \(\dfrac{y}{200}\) - \(\dfrac{2}{16}\) = 0 ⇒ y = \(\dfrac{2}{16}\) x 200
y = 25
Nếu \(x\) = 0 ⇒ \(\dfrac{0+y}{13}\) = 0 ⇒ y = 0
Nếu y = 25 thì \(\dfrac{x+25}{13}\) = \(\dfrac{25x}{200}\) = \(\dfrac{x}{8}\)
8\(x\) + 200 = 13\(x\)
13\(x\) - 8\(x\) = 200
5\(x\) = 200
\(x\) = 200 : 5
\(x\) = 40
Vậy (\(x;y\)) = (0; 0); (40; 25)
Tìm 2 số x,y biết:
\(\frac{x-y}{3}=\frac{x+y}{13}=\frac{xy}{200}\)
Tu x+y/13=x-y/3
=> 3(x +y) = 13(x-y)
=> y = 5x/8
Tu x-y/3=xy/200
=> 200(x-y) = 3xy
=> 200(x - 5x/8) = 3x.5x/8
=> x^2 - 40x
=> x(x-40) = 0
=> x = 0 hoac x = 40.
Voi x = 0 ta co y = 0
Voi x = 40 ta co y = 25
tìm x, y biết (x-y)/3=(x+y)/13=(xy)/200
Tìm các số x,y,biết :\(\frac{x-y}{3}=\frac{x+y}{13}=\frac{xy}{200}\)
Nguyễn Hải Đăng chắc bn giỏi nói ng ta ngu :((
\(\frac{x-y}{3}=\frac{x+y}{13}=\frac{x-y-x-y}{3-13}=\frac{-2y}{-10}=\frac{y}{5}\)
\(\Rightarrow\frac{y}{5}=\frac{xy}{200}\Rightarrow200y=5xy\Rightarrow\frac{200y}{5y}=x\Rightarrow x=40\)
\(\frac{x-y}{3}=\frac{y}{5}=\frac{40-y}{3}=\frac{y}{5}\Rightarrow5.\left(40-y\right)=3y\Rightarrow200-5y=3y\)
\(\Rightarrow200=8y\Rightarrow y=25\)
Vậy x=40, y=25
Tìm x, y biết:
x - y/3 = x + y/13 = xy/200
\(\frac{x+y}{13}=\frac{x-y}{3}=\frac{xy}{200}\)
\(\Rightarrow3\left(x+y\right)=13\left(x-y\right)\)
\(\Rightarrow y=\frac{5x}{8}\)
\(\frac{x-y}{3}=\frac{xy}{200}\Rightarrow200\left(x-y\right)=3xy\)
\(\Rightarrow200\left(x-\frac{5x}{8}\right)=\frac{3x.5x}{8}\Rightarrow x^2-40x\Rightarrow x\left(x-40\right)=0\)
\(\Rightarrow x=\left[\begin{array}{nghiempt}0\\40\end{array}\right.\)\(\Leftrightarrow y=\left[\begin{array}{nghiempt}0\\25\end{array}\right.\)
Tìm các số x, y biết:
\(\frac{x-y}{3}=\frac{x+y}{13}=\frac{xy}{200}.\)
Ta có: \(\frac{x-y}{3}=\frac{x+y}{13}=\frac{xy}{200}\left(1\right)\)
\(\Rightarrow\frac{x-y}{3}=\frac{x+y}{13}=\frac{xy}{200}=\frac{x-y+x+y}{3+13}=\frac{2x}{16}=\frac{x}{8}\left(2\right)\)
Từ (1) và (2) => \(\frac{x}{8}=\frac{xy}{200}\Rightarrow8xy=200x\)
\(\Leftrightarrow8xy-200x=0\)
\(\Leftrightarrow8x.\left(y-25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}8x=0\\y-25=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\y=25\end{cases}}}\)
* Nếu x = 0 thì \(\frac{0-y}{3}=\frac{0+y}{13}=0\Rightarrow y=0\)
* Nếu y = 25 thì \(\frac{x-25}{3}=\frac{x+25}{13}\)
\(\Leftrightarrow13.\left(x-25\right)=3.\left(x+25\right)\)
\(\Leftrightarrow13x-325=3x+75\)
\(\Rightarrow13x-3x=75+325=400\)
\(\Rightarrow10x=400\)
\(\Rightarrow x=40\)
Vậy x =0 thì y =0
x =40 thì y = 25
Tìm x và y, Biết: \(\frac{x-y}{3}=\frac{x+y}{13}=\frac{xy}{200}\)
a, Tìm x biết
\(\frac{x-y}{3}=\frac{x+y}{13}=\frac{xy}{200}\)
b, Tìm các số x,y,z
\(\frac{x}{10}=\frac{y}{5}:\frac{y}{2}=\frac{z}{3}\)và 2x-3y+4z=330