Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thọ dũng
Xem chi tiết
Kẹo Dẻo
Xem chi tiết
Võ Đông Anh Tuấn
31 tháng 7 2016 lúc 17:29

Đặt tổng là A = 1 + 2 + 2^2 + 2^3 + ... + 2^2002 = 1 + 2 + B 
Kể từ số hạng 2^2 đến 2^2002 có 2001 số hạng mà nhóm ba số hạng liên tiếp ta được một số chia hết cho 7 
Do đó B = 2^2 + 2^3 + 2^4 + ... + 2^2000 + 2^2001 + 2^2002 
= 2^2 (1 + 2 + 2^2) + ... + 2^2000 (1 + 2 + 2^2) 
= 2^2. 7 + 2^5 . 7 + ... + 2^2000. 7 
=> B chia hết cho 7 
Vậy A = 3 + B 
nên A chia 7 dư 3

Lê Nguyên Hạo
31 tháng 7 2016 lúc 17:29

\(1+2+2^2+...+2^{2002}\) = 1 + 2 + B

Đặt B = \(2^2+2^3+...+2^{2002}\)

\(=2^2\left(1+2+2^2\right)...+2^{2000}\left(1+2+2^2\right)\)

\(=2^2.7+...+2^{2000}.7\)

\(=7\left(2^2+...+2^{2000}\right)⋮7\)

=> B + 1 + 2 = B + 3

Vì B chia hết cho 7 mà 3 chia 7 dư 3

Vậy A chia 7 dư 3

 

 

Công Chúa Hoa Hồng
31 tháng 7 2016 lúc 17:29

A = 1 + 2 + 2^2 + .....................+ 2^2001 + 2^2002

   = 1 + 2 + ( 22 + 23 + 24 ) + ...... + ( 22000 + 22001 + 22002 )

   =  3 +  22 . ( 1 + 2 + 4 ) + ..... + 22000 . ( 1 + 2 + 4 )

   =  3 + ( 22 + ... + 22000 ) . 7 chia 7 dư 3

Vậy A chia 7 dư 3

Thang Nguyen
Xem chi tiết
Trung
20 tháng 9 2015 lúc 14:59

Đặt tổng là A = 1 + 2 + 2^2 + 2^3 + ... + 2^2002 = 1 + 2 + B 
Kể từ số hạng 2^2 đến 2^2002 có 2001 số hạng mà nhóm ba số hạng liên tiếp ta được một số chia hết cho 7 
Do đó B = 2^2 + 2^3 + 2^4 + ... + 2^2000 + 2^2001 + 2^2002 
= 2^2 (1 + 2 + 2^2) + ... + 2^2000 (1 + 2 + 2^2) 
= 2^2. 7 + 2^5 . 7 + ... + 2^2000. 7 
=> B chia hết cho 7 
Vậy A = 3 + B 
nên A chia 7 dư 3

Nguyễn Võ Văn
20 tháng 9 2015 lúc 14:59

thấy: 2^k + 2^(k+1) + 2^(k+2) = (1+2+4).2^k = 7.2^k chia hết cho 7 

lại thấy trong A có 2003 số hạng, ta bỏ ra 2 số hạng đầu, còn lại 2001 số hạng: chia hết cho 3 

A = 1+2 + (2^2+2^3+2^4) + (2^5+2^6+2^7) +..+ (2^2000+2^2001+2^2002) 
A = 3 + 7.2^2 + 7.2^5 +..+ 7.2^2000 
=> A chia 7 dư 3

Nguyễn Mỹ Dàng
26 tháng 7 2016 lúc 10:09

A chia 7 dư 3

Mai The Hong
Xem chi tiết
tung nguyen viet
6 tháng 8 2015 lúc 16:21

A= 1+2+2^2+...+2^2001+2^2002

A= (1+2+2^2)+(2^3+2^4+2^5)+...+(2^2010+2^2001+2^2002)

A=7+2^3*(1+2+2^2)+...+2^2010*(1+2+2^2)

A=7*(1+2^3+...+2^2010) chia hết cho 7

Phạm Ngọc Gia Khiêm
Xem chi tiết
Calone Alice (^-^)
Xem chi tiết
Trần Long Hưng
Xem chi tiết
Nguyễn Thị Thu Hiền
22 tháng 10 2015 lúc 18:27

A = 1 + 2 + ( 22 + 23 + 2) + .... + ( 22000 + 22001 + 22002 

   = 3 + 22 ( 1 + 2 + 4 ) + .... + 22000( 1 + 2 + 4 ) 

= 3 + ( 22 + .... + 22000) 7 chia 7 dư 3 

Vậy A chia 7 dư 3
 

Erza Scarlet
Xem chi tiết
o0o I am a studious pers...
13 tháng 7 2016 lúc 19:57

\(A=1+2+2^2+....+2^{2002}\)

\(\Rightarrow A=2A-A=1-2^{2003}\)

\(\Rightarrow A:7=1-2^{2003}:7\)dư 7 

Precure_04bn
Xem chi tiết
Hồ Thu Giang
27 tháng 9 2015 lúc 11:48

Tổng A có 2003 số hạng. Nhóm 3 số vào một nhóm ta được 667 nhóm và thừa 2 số hạng

=> A = 1+2+(22+23+24)+(25+26+27)+.....+(22000+22001+22002)

=> A = 3+22(1+2+22)+25(1+2+22)+.....+22000(1+2+22)

=> A = 3+22.7+25.7+.....+22000.7

=> A = 3+7.(22+25+.....+22000)

Vì 7.(22+25+.....+22000) chia hết cho 7

Mà 3 chia 7 dư 3

=> 3+7.(22+25+.....+22000) chia 7 dư 3

=> A chia 7 dư 3