Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhóc_Siêu Phàm
Xem chi tiết
Hypergon
Xem chi tiết
Nguyễn Đình Đạt
Xem chi tiết
Đoàn Đức Hà
23 tháng 7 2021 lúc 18:26

\(x^2+y^2+z^2-\left(x+y+z\right)=x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)\)

có \(x\left(x-1\right),y\left(y-1\right),z\left(z-1\right)\)là các tích của hai số nguyên liên tiếp nên chia hết cho \(2\)do đó 

\(\left(x+y+z\right)\equiv\left(x^2+y^2+z^2\right)\left(mod2\right)\)

\(\Rightarrow x+y+z⋮2\)(vì \(x^2+y^2+z^2⋮2\)

\(\Leftrightarrow x+7y+13z⋮2\).

Mà \(x+7y+13z>2\)(do \(x,y,z\)dương) 

nên \(x+7y+13z\)là hợp số. 

Khách vãng lai đã xóa
My Love
Xem chi tiết
BiBo MoMo
Xem chi tiết
Kiệt Nguyễn
2 tháng 12 2019 lúc 21:28

Ta có: \(x^3-x=\left(x-1\right)x\left(x+1\right)\)

Tích 3 số nguyên liên tiếp chia hết cho 3 nên \(\left(x-1\right)x\left(x+1\right)⋮3\)

hay \(x^3-x⋮3\)

Tương tự \(y^3-y⋮3\);\(z^3-z⋮3\)

\(\Rightarrow x^3+y^3+z^3-\left(x+y+z\right)⋮3\)

Mà \(\left(x+y+z\right)⋮3\left(gt\right)\Rightarrow a^3+b^3+c^3⋮3\left(đpcm\right)\)

Khách vãng lai đã xóa
Trịnh Xuân Minh
Xem chi tiết
Phùng Tuấn Minh
Xem chi tiết
四种草药 - TFBoys
13 tháng 8 2019 lúc 20:46

Giả sử x;y⋮̸ 3

⇒x^2;y^2 chia 3 dư 1

⇒z^2=x^2+y^2 chia 3 dư 2 ( vô lý vì z^2 là số chính phương )

Vậy x⋮3y⋮3⇒xy⋮3

Chứng minh tương tự xy⋮4

(3;4)=1 => x.y chia hết cho 12

Thái Duy Phong
Xem chi tiết
Nguyễn Đình Trung Hiếu
Xem chi tiết