tim x,y,z :x/4= y/2= z/-3 và xyz=240
giup minh vs minh can gap lam.thanks nhiều
tim x y z
\(x\left(x+y+z\right)=13;y\left(x+y+z\right)=7;z\left(x+y+z\right)=-4\)
giup minh nhe minh dang can gap
\(\left\{{}\begin{matrix}x\left(x+y+z\right)=13\\y\left(x+y+z\right)=7\\z\left(x+y+z\right)=-4\end{matrix}\right.\) \(\Leftrightarrow x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=13+7-4\)
\(\Rightarrow\left(x+y+z\right)\left(x+y+z\right)=16\)
\(\Rightarrow\left(x+y+z\right)^2=16\)
\(\Rightarrow\left[{}\begin{matrix}x+y+z=4\\x+y+z=-4\end{matrix}\right.\)
Với \(x+y+z=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{13}{4}\\y=\dfrac{7}{4}\\z=-1\end{matrix}\right.\)
Với \(x+y+z=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{13}{4}\\y=-\dfrac{7}{4}\\z=1\end{matrix}\right.\)
Cho x,y,z la 3 so nguyen duong, nguye to cung nhau thoa man (x-z)(y-z)=z^2. Chung minh tich xyz la so chinh phuong
Giai nhanh jum mik nha dg can gap
Tim x, y, z biet
a ) |x-3,5|+ |x+5|=0
b) |x-1| + (y+1)^2 + |z-1|=0
c) ( x-1/3)^2 + (y-2)^2+ (z-1)^2 be hon hoac bang 0
d)(x-z)^2+ (y+x)^2 + (z+1/4)^2 =0
Cac ban giup minh voi minh can gap lam
a. vô nghiệm vì tổng hai số dương chỉ bằng ko khi chúng đồng thời bằng 0
b. tổng 3 số dưng =0 khi dồng thời cả 3 bằng 0
vậy x=1; y=-1; z=1
c.tổng 3 số dưng luông lớn hơn bằng ko
vậy x=1/3; y=2; z=1
d tương tự
x-z=0
x+y=0
z+1/4=0
.............
z=-1/4
x=-1/4
y=1/4
Cho x,y,z là các số thực khác 1 thoả mãn xyz=1 . Chứng minh rằng
\(\dfrac{x^2}{\left(x-1\right)^2}+\dfrac{y^2}{\left(y-1\right)^2}+\dfrac{z^2}{\left(z-1\right)^2}\ge1\)
Jup mik vs nha mik can gap lam
Đặt \(x=\dfrac{c^2}{ab}\); \(y=\dfrac{a^2}{bc}\); \(z=\dfrac{b^2}{ac}\)
\(\Rightarrow xyz=1\) là điều hiển nhiên
BĐT cần chứng minh tương đương
\(\dfrac{\left(\dfrac{c^2}{ab}\right)^2}{\left(\dfrac{c^2}{ab}-1\right)^2}+\dfrac{\left(\dfrac{a^2}{bc}\right)^2}{\left(\dfrac{a^2}{bc}-1\right)^2}+\dfrac{\left(\dfrac{b^2}{ac}\right)^2}{\left(\dfrac{b^2}{ac}-1\right)^2}\ge1\)
\(\Leftrightarrow\dfrac{c^4}{\left(c^2-ab\right)^2}+\dfrac{a^4}{\left(a^2-bc\right)^2}+\dfrac{b^4}{\left(b^2-ac\right)^2}\ge1\)
Áp dụng BĐT C.B.S
\(\dfrac{c^4}{\left(c^2-ab\right)^2}+\dfrac{a^4}{\left(a^2-bc\right)^2}+\dfrac{b^4}{\left(b^2-ac\right)^2}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(c^2-ab\right)^2+\left(a^2-bc\right)^2+\left(b^2-ac\right)^2}\)ta phải chứng minh:
\(\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(c^2-ab\right)^2+\left(a^2-bc\right)^2+\left(b^2-ac\right)^2}\ge1\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)\ge a^4+b^4+c^4+a^2b^2+b^2c^2+a^2c^2-2\left(abc^2+a^2bc+b^2ac\right)\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2\left(ab^2c+abc^2+a^2bc\right)\ge0\)
\(\Leftrightarrow\left(ab+bc+ac\right)^2\ge0\) ( luôn đúng )
cho x>=y>=z>0.chứng minh \(\frac{x^2y}{z}+\frac{y^2z}{x}+\frac{z^2x}{y}>=x^2+y^2+z^2\)
minh dang can gap lam ai giup minh vs
Tim x, y, z biet :
a , x/5 = y/7 va x . y =140
b , x : y : z = 2 : 5 : 7 va 3x + 2y - z =27
Moi nguoi giup minh giai bai nay nha minh can gap
a) Đặt \(\frac{x}{5}=\frac{y}{7}=k\)
\(\Rightarrow\hept{\begin{cases}x=5k\\y=7k\end{cases}}\)
\(\Rightarrow xy=5k.7k\)
\(\Rightarrow140=35k^2\)
\(\Rightarrow k^2=4\)
\(\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
Với k = 2 ta có :
+) \(\frac{x}{5}=2\Rightarrow x=10\)
+) \(\frac{y}{7}=2\Rightarrow y=14\)
Với k = -2 ta có :
+) \(\frac{x}{5}=-2\Rightarrow x=-10\)
+) \(\frac{y}{7}=-2\Rightarrow y=-14\)
Vậy \(\left(x;y\right)=\left\{\left(10;14\right);\left(-10;-14\right)\right\}\)
b) Ta có :
\(x:y:z\)\(=\)\(2:5:7\)\(\Rightarrow\)\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\)\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)
+) \(\frac{x}{2}=3\Rightarrow x=6\)
+) \(\frac{y}{5}=3\Rightarrow y=15\)
+) \(\frac{z}{7}=3\Rightarrow z=21\)
Vậy x = 6, y = 15 và z = 21
_Chúc bạn học tốt_
a, x.y/5.7=140/35
=140/35=4
x/5=4/7
x/7=5/4
x.7=5.4
x.7=20
x=20;7
x=20/7
b,chịu
tk thì tk ko tk cx đc
a, \(\frac{x}{5}=\frac{y}{7}\left(x.y=140\right)\)
Đặt \(\frac{x}{5}=\frac{y}{7}=k\)
\(\Rightarrow7x=5y\)
\(\Rightarrow x.y=7k.5k=35k^2=140\)
\(\Rightarrow k^2=4\Rightarrow k=\pm2\)
\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x=2.7=14\\y=2.5=10\end{cases}}\\\hept{\begin{cases}x=\left(-2\right).7=-14\\y=\left(-2\right).5=-10\end{cases}}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x=2.7=14\\y=2.5=10\end{cases}}\\\hept{\begin{cases}x=\left(-2\right).7=-14\\y=\left(-2\right).5=-10\end{cases}}\end{cases}}\)
Vậy ....
b, \(x:y:z=2:5:7\left(3x+2y-z=27\right)\)
Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\)
\(\Leftrightarrow x=2k;y=5k=z=7k\)
\(\Leftrightarrow3x+2y-z=6k+10k-7k=27\)
\(\Leftrightarrow x=6;y=15;z=21\)
Vậy ...
1. tim cac cap so nguyen duong (x, y) sao cho:
2 x3 + xy = 11
2. tim cac cap so nguyen duong (x, y, z)sao cho:
x + y + z = x*y*z
3. tim x thuoc z, biet;
|x| = -2003
|x| = |-2003|
minh dang can gap lam. chieu mai phai nop rui
ai giup minh vs can gap
pt da thuc thanh nhan tu
a](x^2+y^2+z^2)*(x+y+z)^2+(xy+yz+xz)
b]2x^3-x^2+5x+3
c]x^3-7x^2-3
Cho \(x+y+z=xyz\) và \(xy+yz+zx\ne-3\)
Chứng minh: \(\dfrac{x.\left(y^2+z^2\right)+y.\left(z^2+x^2\right)+z.\left(x^2+y^2\right)}{xy+yz+zx-3}=xyz\)