Tìm Min của A=|x+5|+2-x
1.Tìm Min A=-4+Giá trị tuyệt đối của 1-2x
2.Tìm Max B=-1/2 -GTTĐ của 3+1
3. Tìm Min C=GTTĐ của (x-1)+GTTĐ của (x-2 )+5
cho biểu thức a=|x+5|+2-x tìm min của a
Tìm MIN của A=\(|x-2|+|5-x|\)
Ta có: A=|x-2|+|5-x|≥|x-2+5-x|
A=|x-2|+|5-x|≥3
Dấu "=" xảy ra khi (x-2)(5-x)=0
=> x-2=0 => x=2
=>5-x=0 => x=5
minA = 3 <=> x=2 hoặc x=5
Ta có : A = |x-2|+|5-x|
=> A = |5-x|+|x-2|
Áp dụng công thức : |a|+|b|>=|a+b|
\(\Rightarrow A\ge\left|5-x+x-2\right|=\left|3\right|=3\)
Vậy dấu "=" xảy ra khi :
\(\hept{\begin{cases}x\le5\\x\ge2\end{cases}}\Rightarrow x\in\left\{2;3;4;5\right\}\)
Vậy với \(x\in\left\{2;3;4;5\right\}\)thì A đạt Min = 3
Ta có : \(A=\left|x-2\right|+\left|5-x\right|\)
\(\Rightarrow A\ge\left|x-2+5-x\right|\forall x\)
\(\Rightarrow A\ge\left|3\right|\forall x\)
\(\Rightarrow A\ge3\forall x\)
Dấu \("="\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x-2\ge0\\5-x\ge0\end{cases}\left(1\right)}\\\hept{\begin{cases}x-2\le0\\5-x\le0\end{cases}\left(2\right)}\end{cases}}\)
tìm Min của A = x^4 + 3|x| + 2
B= ( x^4 + 5)^2
Ta có : \(x^4\ge0\forall x\)và \(3\left|x\right|\ge0\forall x\)
\(\Rightarrow x^4+3\left|x\right|+2\ge2\forall x\)
hay \(A\ge2\)
Dấu "=" xảy ra <=> x = 0
Vậy, A min = 2 khi và chỉ khi x = 0
\(B=\left(x^4+5\right)^2\)
Có \(\left(x^4+5\right)^2\ge0\)
Dấu "=" xảy ra khi \(x^4=-5\)
Vậy Min B = 0 <=>
Tìm Min của A=\(\frac{x+5}{x}+\frac{2}{10-x}\)
Bạn kham khảo link này nhé.
Câu hỏi của Minh Đen - Toán lớp 8 - Học toán với OnlineMath
Tìm Min của A=\(\frac{x+5}{x}+\frac{2}{10-x}\)
tìm max hoặc min của: A= 2/3 +21/(x+3y2)+5|x+5|+14
\(A=2+\frac{21}{\left(x+3y\right)^2}+5\left|x+5\right|+14\)
Ta có:
\(\left(x+3y\right)^2\ge0;\left|x+5\right|\ge0\)
\(\Leftrightarrow\left(x+3y\right)^2+5\left|x+5\right|+14\ge14\)
\(\Leftrightarrow\frac{21}{\left(x+3y\right)^2}+5\left|x+5\right|+14\le\frac{21}{14}=\frac{3}{2}\)
\(\Leftrightarrow A\le\frac{2}{3}+\frac{3}{2}=\frac{13}{6}\)
Dấu '' = '' xảy ra khi:
\(x+5=0\Leftrightarrow x=-5\)
\(x+3y=0\Leftrightarrow y=\frac{-x}{3}=\frac{5}{3}\)
Vậy \(MaxA=\frac{13}{6}\Leftrightarrow x=-5;y=\frac{5}{3}\)
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
tích mình với
ai tích mình
mình tích lại
thanks
A=|x+5| + |2-x| tìm min A
A=|x+5|+|2-x|>=|x+5+2=x|
A>=|7|=7
Vậy Min A =7 <=> -5<=x<=2