2/2.3 + 2/3.4 +...+ 2/99.100
help :C
1.Tính
A= (1-1/22).(1-1/32)...(1-1/1002)
B= -1/1.2-1/2.3-1/3.4-...-1/100.101
C= 1.2+2.3+3.4+...+100.101
Lời giải :
Đặt S=1.2+2.3+3.4+4.5+…+99.100+100.101
3S=1.2.3+2.3.3+3.4.3+4.5.3+…+99.100.3+100.101.3
=1.2(3−0)+2.3(4−1)+3.4(5−2)+4.5(6−3)+…+99.100(101−98)+100.101(102−99)
=0.1.2-1.2.3+1.2.3-2.3.4+...+99.100.101-100.101.102
=100.101.102
S=100.101.34=343400
1.Tính
a) Ta có:
A=(1-1/22).(1-1/32)...(1-1/1002)
=>A=3/22.8/32.....9999/1002
=>A=(1.3/2.2).(2.4/3.3).....(99.101/100.100)
=>A=(1.2.3.....99/2.3.4.....100).(3.4.5.....101/2.3.4.....100)
=>A=1/100.101/2
=>A=101/200
b) Ta có:
B=-1/1.2-1/2.3-1/3.4-...-1/100.101
=>B=-(1/1.2+1/2.3+1/3.4+...+1/100.101)
=>B=-(1-1/2+1/2-1/3+1/3-1/4+...+1/100-1/101)
=>B=-(1-1/101)
=>B=-100/101
c) Ta có:
C=1.2+2.3+3.4+...+100.101
=>3C=1.2.3+2.3.3+3.4.3+...+100.101.3
=>3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+100.101.(102-99)
=>3C=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+...+100.101.102
=>3C=100.101.102
=>3C=1030200
=>C=343400
Chúc bạn hok tốt nhé >:)!!!!!
tính tổng : A=1.5 + 5.9 + ....+97.101+101.105
B=1.2^2+2.3^2+3.4^2+....+99.100^2
C=1.2+3.4+5.6+7.8+...+99.100
D=1.2.3+2.3.4+...+98.99.100
Mình làm mẫu 1 bài nha !
Có : 12A = 1.5.12+5.9.12+....+101.105.12
= 1.5.12+5.9.(13-1)+.....+101.105.(109-97)
= 1.5.12+5.9.13-1.5.9+.....+101.105.109-97.101.105
= 1.5.12-1.5.9+101.105.109
= 1155960
=> A = 1155960 : 12 = 96330
Tk mk nha
Có : 4D = 1.2.3.4+2.3.4.4+....+98.99.100.4
= 1.2.3.4+2.3.4.(5-1)+.....+98.99.100.(101-97)
= 1.2.3.4+2.3.4.5-1.2.3.4+......+98.99.100.101-97.98.99.100
= 98.99.100.101
=> D = 98.99.100.101/4 = 24497550
Tính ( bằng cách hợp lý nếu có thể ):
a) 1/2.3 +1/3.4 + 1/4.5 + .... + 1/9.10
b) 1/2 + 1/6 + 1/12 + .... +1/90
c) 12/1.2 . 22/2.3 . 32/3.4 . 42/4.5
2/1.2 + 2/2.3 +2/3.4+..........+2/99.100
= 2/1 - 2/2 + 2/2 - 2/3 + 2/3 - 2/4 + ..... + 2/99 - 2/100
= 2/1 + 2/100
= 101/50
2/1 - 2/2 + 2/2 - 2/3 + 2/3 - 2/4 +...+ 2/99 - 2/100
= 2/1 - 2/100
= 99/50
2/2.3+2/3.4+...+2/19.20 = ?
2/2.3+2/3.4+2/4.5+.....+2/2017.2018
Bn tham khảo nhé :
2 / 2 . 3 + 2 /3 . 4 + 2 / 4 .5 + ... + 2 / 2017 . 2018
= 2 . ( 1/2 . 3 + 1/3 . 4 + 1/4 . 5 + ... + 1/ 2017 . 2018
= 2 . ( 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/2017 - 1/2018 )
= 2 . ( 1/2 - 1/2018)
= 2 . 1008/2018
= 2016/2018
= 1008/1009
\(2\times(\frac{1}{2\times3}\times\frac{1}{3\times4}\times...\times\frac{1}{2017\times2018}))\)
\(2\times(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018})\)
\(2\times(\frac{1}{2}-\frac{1}{2018})\)
\(2\times\frac{504}{1009}=\frac{1008}{1009}\)
\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+.......+\frac{2}{2017.2018}\)
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.......+\frac{1}{2017.2018}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.........-\frac{1}{2017}-\frac{1}{2018}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{2018}\right)\)
\(=2\left(\frac{1009}{2018}-\frac{1}{2018}\right)\)
\(=2.\frac{1008}{2018}\)
\(=\frac{1008}{1009}\)
2/1.2 + 2/2.3 + 2/3.4 + ... + 2/2008.2009
Bài làm:
Ta có: \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2008.2009}\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\right)\)
\(=2\left(1-\frac{1}{2009}\right)\)
\(=2.\frac{2008}{2009}=\frac{4016}{2009}\)
\(\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{2008.2009}=2\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2008.2009}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2008}-\frac{1}{2009}\right)=2\left(1-\frac{1}{2009}\right)=2.\frac{2008}{2009}=\frac{4016}{2009}\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2008.2009}\)
\(=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\right).2\)
\(=\left(1-\frac{1}{2009}.2\right)\)
\(=\frac{4016}{2009}\)
Tính: C=1 + 1/2 x 2.3/2 +1/3 x 3.4/2 +1/4 x 4.5/2 +.............+1/20 x 20.21/2
Tính :
a) ( 12 + 22 + 32 +....+ 492 ) - ( 1.2 + 2.3 + 3.4+....+ 49.50 )
b) Tính A - B =... biết A =1.2 + 2.3 + 3.4 + ...+ 98.99 và B = 1^2 + 2^2 + 3^2 +...+98^2?