Cho tam giác ABC vuông tại A có đường phân giác trong BE(E thuộc AC). Đường tròn đường kính AB cắt BE, BC lần lượt tại M, N(khác B). Đường thẳng AM cắt BC tại K. chứng minh AE.AN=AM.AK
cho tam giác ABC vuông tại A có đường phân giác trong BE(E thuộc AC). Đường tròn đường kính AB cắt BE, BC lần lượt tại M, N(khác B). Đường thẳng AM cắt BC tại K. chứng minh AE.AN=AM.AK
giúp với
. Một công ty may giao cho tổ A may 16800 sản phẩm, tổ B may 16500 sản phẩm và bắt đầu thực hiện công việc cùng lúc. Nếu sau 6 ngày tổ A được hỗ trợ 10 công nhân may thì họ hoàn thành công việc cùng lúc với tổ B, nếu tổ A được hỗ trợ thêm 10 công nhân ngay từ đầu thì họ hoàn thành công việc trước tổ B 1 ngày. Xác định số công nhân ban đầu của mỗi tổ biết mỗi công nhân may mội ngày được 20 sản phẩm.
Cho đường tròn (O). Các đường cao BE và CF của tam giác ABC cắt nhau tại H và cắt (O) lần lượt tại E' và F' (E' khác B và F' khác C).
a, Chứng minh tứ giác BCEF nội tiếp
b, Chứng minh EF//E'F'
c, Kẻ OI vuông góc với BC( I thuộc BC). Đường thẳng vuông góc với HI tại H cắt đường thẳng AB tại M và cắt đường thẳng AC tại N. Chứng minh tam giác IMN cân
Tam giác ở trong hay ngoài hình tròn?
Cho tam giác ABC nhọn ( AB<AC), đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh : AH vuông góc BC tại D và H là tâm đường tròn nội tiếp tam giác DEF. (đã làm được)
b) EF cắt BC tại K, FD cắt EB tại M, ED cắt FC tại N. CM: K,M,N thẳng hàng.( khó quá :P)
Mọi người giải giúp mình câu (d) của bài này với ạ
Cho tam giác ABC nhọn (AB < AC) nộp tiếp (O;R), có các đường cao BE, CF cắt nhau tại H. Gọi I,K lần lượt là trung điểm của BC, AH
a/ Chứng minh các tứ giác AEHF, BCEF nội tiếp đường tròn. Suy ra IK vuông góc EF
b/ AH cắt BC tại D. Chứng minh tam giác DEF nội tiếp đường tròn đường kính IK
c/ Các đường thẳng ED, BC cắt nhau tại M. AM cắt (O) tại N. Chứng minh HN vuông góc AM
d/ Kẻ tiếp tuyến tại B của (O) cắt ME tại S. Chứng minh 5 điểm B S N E I cùng thuộc 1 đường tròn
tứ giác BFEC có hai góc kề nhau cùng nhìn đoạn BC dưới một góc vuông : BFCˆ=BECˆ(=90)BFC^=BEC^(=90) ==> Tức giác BFEC là tứ giác nội tiếp
==> 4 điểm B,E,F,C cùng thuộc một đường tròn.
Cho tam giác ABC nhọn (AB < AC) nộp tiếp (O;R), có các đường cao BE, CF cắt nhau tại H. Gọi I,K lần lượt là trung điểm của BC, AH
a/ Chứng minh các tứ giác AEHF, BCEF nội tiếp đường tròn. Suy ra IK vuông góc EF
b/ AH cắt BC tại D. Chứng minh tam giác DEF nội tiếp đường tròn đường kính IK
c/ Các đường thẳng EF, BC cắt nhau tại M. AM cắt (O) tại N. Chứng minh HN vuông góc AM
d/ Kẻ tiếp tuyến tại B của (O) cắt ME tại S. Chứng minh 5 điểm B S N E I cùng thuộc 1 đường tròn
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp
BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp
BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp
BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC
a) c/m AMHN nội tiếp
b) BMNC nội tiếp
BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp
BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp
BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp
BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp
cho tam giác ABC có M;Nlà trung điểm lần lượt của AB; AC . đường thẳng MN cắt đường kính AB tại D;E cắt đường kính AC tại F;G .chứng minh :chứng minh hai đường tròn trên cắt nhau tại một điểm thuộc BC .chứng minh BD ;CE là các đường phân giác trong và ngoài của góc B
Cho tam giác ABC nhọn, đường tròn tâm O đường kính BC cắt AB tại F bà cắt AC tại E. BE và CF cắt nhau tại H
a/ Chứng minh AH vuông góc với BC tại D và H là tâm đường tròn nội tiếp tam giác DEF
b/ Hai đường thẳng EF và BC cắt nhau tại K; FD cắt EB tại M; ED cắt FC tại N. Chứng minh K, M, N thẳng hàng
cho tam giác abc nhọn ab<ac. m là trung điểm của bc. đường tròn o đường kính am lần lượt cắt cạnh ab,ac tại p,q khác a.
a) chứng minh rằng bp.ba+cq.ca=1/2.bc^2
b)đường thẳng qua m và vuông góc với cạnh bc cắt đường tròn o tại k khác m. chứng minh rằng: kp.mq=kq.mp
c) gọi n là trung điểm của đoạn pq, đường tròn ngoại tiếp tam giác mnk cắt đường thẳng pq tại s khác n. chứng minh sm,sk là tiếp tuyến của đường tròn o