tìm các số nguyên dương a và b sao cho: a^3+1=(b+1)^2
tìm các số nguyên dương a và b sao cho: a^3+1=(b+1)^2
Ta có:
a3 + (b + 1)2
a3 + 1 = (b + 1).(b + 1)
a3 + 1 = b2 + b + b + 1
=> a3 = b2 + 2b
=> a3 = b.(b + 2)
=> a.a2 = b.(b + 2)
Do a,b nguyên dương => a,b khác 0 => a = b; a2 = b + 2 vì nếu a khác b, a2 khác b + 2 thì không có trường hợp nào thỏa mãn
=> a = b = 2
a có:
a3 + (b + 1)2
a3 + 1 = (b + 1).(b + 1)
a3 + 1 = b2 + b + b + 1
=> a3 = b2 + 2b
=> a3 = b.(b + 2)
=> a.a2 = b.(b + 2)
Do a,b nguyên dương => a,b khác 0 => a = b; a2 = b + 2 vì nếu a khác b, a2 khác b + 2 thì không có trường hợp nào thỏa mãn
=> a = b = 2
Cái thằng...
...Natsu_Draneel
....Nói đi chép bài
Tìm các số nguyên dương a và b sao cho:
(3^a)+1=(b+1)^2
Tìm các số nguyên dương a và b sao cho 3a +1= (b+1)2
Lời giải:
$3^a+1=(b+1)^2$
$\Rightarrow 3^a+1=b^2+2b+1$
$\Rightarrow 3^a=b^2+2b=b(b+2)$
Đặt $b=3^m, b+2=3^n$ với $m,n$ là hai số tự nhiên, $m+n=a$
Ta có:
$b=3^m, b+2=3^n$
$\Rightarrow 2=3^n-3^m$
Nếu $m,n$ cùng lớn hơn $0$ thì $3^n-3^m\vdots 3$. Mà $2\not\vdots 3$ nên loại
$\Rightarrow$ trong 2 số $m,n$ có ít nhất 1 số bằng $0$.
Mà $n>m$ nên $m=0$.
Khi đó:
$3^n-3^m=3^n-3^0=2\Rightarrow 3^n=3\Rightarrow n=1$
$\Rightarrow a=m+n=0+1=1$
$(b+1)^2=3^a+1=3^1+1=4$
$\Rightarrow b+1=2$
$\Rightarrow b=1$
Vậy.......
a) Tìm các số nguyên dương a sao cho a = 10 ; a = 1 ; a = 4 ; a = − 2
b) Tìm các số nguyên âm a sao cho a = 5 ; a = 1 ; a = − 4 ; a = − 3
c) Tìm các số nguyên a sao cho a = 5 ; a = 1 ; a = − 4 ; a = − 3
Tìm các số nguyên dương a và b sao cho 3a + 1=(b+1)2
1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố
2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố
3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương
4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p
5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab +c ( a + b )
Chứng minh: 8c + 1 là số cp
6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3
Chứng minh: 9x – 1 là lập phương đúng
7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c
8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1
Chứng minh: ( x + y )^2 + ( xy – 1 )^2 không phải là số cp
9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2
10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương
11, Cho các số nguyên n thuộc Z, CM:
A = n^5 - 5n^3 + 4n \(⋮\)30
B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ
C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42
bài 1
tìm 2 phân số có tử số bằng 1 các mẫu dương biết tổng của 2 phân số đó với tích của chúng thì dc 1/2
bài 2
tìm 2 số nguyên dương sao cho tích 2 số đó gấp đôi tổng của chúng
bài 3
tìm 2 số nguyên dương a và b sao cho
1/a + 1/b = 1/6
dễ làm
1:5/6va 1/8
2:55 va 99
3:3 va 7
mình làm rồi bạn ạ,mình mới học sag ny, cho minh nha
1) tìm các số nguyên tố a, b, c và số nguyên dương k sao cho a^2+b^2+16c^2 = 9k^2 +1
2)tìm a, b, c, d sao cho a^2+b^2+c^2+d^2 = 2abcd
tìm các ố nguyên dương a và b sao cho : 3^a+1=(b+1)^2