Cho 2 số a và b thỏa mãn :
a−b=2(a+b)=a/b
Chứng minh a = -3b ; Tính ab ; Tìm a và b.
Cho \(a\) và \(b\) là các số tự nhiên thỏa mãn \(2a^2+2=3b^2+b\). Chứng minh rằng: \(a-b\) và \(3a+3b+1\) là các số chính phương.
Để chứng minh rằng √(a-b) và √(3a+3b+1) là các số chính phương, ta sẽ điều chỉnh phương trình ban đầu để tìm mối liên hệ giữa các biểu thức này. Phương trình ban đầu: 2^(2+a) = 3^(2+b) Ta có thể viết lại phương trình theo dạng: (2^2)^((1/2)+a/2) = (3^2)^((1/2)+b/2) Simplifying the exponents, we get: 4^(1/2)*4^(a/2) = 9^(1/2)*9^(b/2) Taking square roots of both sides, we have: √4*√(4^a) = √9*√(9^b) Simplifying further, we obtain: 22*(√(4^a)) = 32*(√(9^b)) Since (√x)^y is equal to x^(y/), we can rewrite the equation as follows: 22*(4^a)/ = 32*(9^b)/ Now let's examine the expressions inside the square roots: √(a-b) can be written as (√((22*(4^a))/ - (32*(9^b))/)) Similarly, √(3*a + 3*b + ) can be written as (√((22*(4^a))/ + (32*(9^b))/)) We can see that both expressions are in the form of a difference and sum of two squares. Therefore, it follows that both √(a-b) and √(3*a + 3*b + ) are perfect squares.
Cho a,b thỏa mãn 2a2 + a=3b2+b. Chứng minh rằng a-b và 3a+3b +1 là số chính phương
Có 2a^2 + a = 3b^2 + b
<=> 2a^2 + a - 3b^2 - b = 0
<=> 3a^2 + a - 3b^2 - b = a^2
Xét (a-b).(3a+3b+1) = 3a^2-3ab+3ab-3b^2+a-b = 3a^2-3b^2+a-b = a^2 là 1 số chính phương (1)
Gọi ƯCLN của a-b;3a+3b+1 là d ( d thuộc N sao )
=> a-b chia hết cho d
3a+3b+1 chia hết cho d
a^2 chia hết cho d^2
=> a-b chia hết cho d , 3a+3b +1 chia hết cho d , a chia hết cho d
=> a chia hết cho d , b chia hết cho d , 3a+3b+1 chia hết cho d
=> 1 chia hết cho d => d = 1 ( vì d thuộc N sao )
=> a-b và 3a+3b+1 nguyên tố cùng nhau (2)
Từ (1) và (2) => a-b và 3a+3b+1 đều là số chính phương
Cho hai số a và b thỏa mãn
a-b =2(a+b)=a/b
Chứng minh a= -3b . Tính a/b và tìm a , b
Cho a,b thuộc n* thỏa mãn 3a^2+a-b=4b^2 Chứng minh rằng a-b và 3a+3b+1 là số chính phương
Cho 2 số a và b thỏa mãn : a-b = 2(a+b) -a/b
chứng minh a=-3b ;tính a/b ;tìm a va b
Cho a và b là các số tự nhiên thỏa mãn 2a2 + a = 3b2 + b.
Chứng minh rằng: (a - b) và (3a + 3b + 1) là các số chính phương.
https://olm.vn/hoi-dap/detail/92192540983.html
Câu hỏi của La Văn Lết - Toán lớp 8
Bạn tham khảo ở đây nhé
Câu hỏi của La Văn Lết - Toán lớp 8 - Học toán với OnlineMath
Em thma khảo bài làm tại link này nhé!
Giải hẳn hoi coi... bên kia xem ko hiểu mới đăng lên chứ!!
Cho 2 số và b thỏa mãn: a-b=2(a+b)=a/b chứng minh a=-3b ;tính a/b;tìm a và b
cho 2 số tự nhiên a và b thỏa mãn (a+b)(a+3b) chia hết cho 4 nhưng không chia hết cho 8.
Chứng minh rằng (a+b)(a+3b)(a+5b) chia hết cho 8 nhưng không chia hết cho 16
Cho hai số a và b thỏa mãn: a-b = 2(a+b)=a/b
Chứng minh rằng a= -3b ; Tính a/b Tìm a và b
Cảm ơn nhiều!
CM: a = -3b
Theo đề bài, ta có: a-b = 2(a+b)
=> a-b = 2a + 2b
=> a - 2a = 2b + b
=> a(1 - 2) = b(2 + 1)
=> a.(-1) = b.3
=> -a = 3b
=> a = -3b
Ta có: a-b = 2(a+b)
=> a-b = 2a + 2b
=> a - 2a = 2b + b
=> a(1 - 2) = b(2 + 1)
=> a.(-1) = b.3
=> -a = 3b
=> a = -3b
=> a/b= -3
=>a-b=-3 (1)
=>2(a+b)=-3
=>a+b=-3/2 (2)
Từ (1) và (2)=> (a+b) - (a-b) =-3/2+(-3)
=>2a=-9/2
=>a=-9/4
=>b=-3-(-9/4)
=>b=-21/4
Vậy…