Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Hiếu
Xem chi tiết
Lê Tuấn Nghĩa
5 tháng 5 2020 lúc 16:00

Ta có 

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)

\(S=1-\frac{1}{n+3}< 1\)(vì n thuộc N*)

_Kudo_

Khách vãng lai đã xóa
Nguyễn Minh Hiếu
5 tháng 5 2020 lúc 16:06

Cảm ơn bn

Khách vãng lai đã xóa
Lê Quỳnh Chi
5 tháng 5 2020 lúc 16:14

Bài làm

S= 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/n. (n+3)

  =1/1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ... +1/(n-3) - 1/n +1/n - 1/(n+3)

  =1/1 + ( - 1/4 + 1/4 - 1/7 + 1/7 - ... -1/n + 1/n ) -1/ (n+3)

  = 1 + 0 - 1/(n+3)

  = 1 - 1/(n+3)

Mà 1 - 1/(n+3) < 1

Vậy S < 1

Mk trình bày ko đc chi tiết lắm ,sorry bạn nha

Khách vãng lai đã xóa
loveny2209
Xem chi tiết
Trần Tuấn Hoàng
17 tháng 3 2022 lúc 21:44

\(n=1\) không thỏa mãn.

loveny2209
17 tháng 3 2022 lúc 21:46

ab

 

Quỳnh An
Xem chi tiết
Lâm Huy Vũ
Xem chi tiết
Nguyễn Hoàng Hà
18 tháng 3 2016 lúc 14:40

xin lỗi qua rồi

Hoàng Mai Linh
Xem chi tiết
Tran Le Khanh Linh
15 tháng 4 2020 lúc 19:26

sửa đề: N=(a-2)(a+3)-(a-3)(a+2)

=(a2+3a-2-6)-(a2+2a-3a-6)

=a2+a-6-a2+a+6=2a là số chẵn với mọi a thuộc Z

Khách vãng lai đã xóa
Bùi Quang Trí
15 tháng 4 2020 lúc 19:42

C1: nếu a chẳn thì (a-2) và (a+20) là số chẳn. Do đó (a-2)(a+3) và (a-3)(a+20) chẳn nên N chẳn.

nếu a lẻ thì (a+3) và (a-3) là số chẳn. Do đó (a-2)(a+3) và (a-3)(a+20) chẳn nên N chẳn.

C2:

vì a thuộc Z nên a có thể viết bằng: a = 2n hoặc a = 2n+1.

Nếu a = 2n thì N=(2n-2)(2n+3) - (2n-3)(2n+20) = 2*[(n-1)(2n+3) - (2n-3)(n+10)]. Do đó N là số chẳn.

Nếu a= 2n+1 thì N =(2n+1 -2)(2n+1+3) -(2n+1-3)(2n+1+20) = 2*[(2n-1)(n+1) - (n-1)(2n+21)]. Do đó N là số chẳn.

Kết luận: N chẳn với mọi a.(DPCM)

Khách vãng lai đã xóa
Nguyễn Đình Hưng
15 tháng 4 2020 lúc 20:08

Xét 2 trường hợp:

+ Trường hợp 1: a là 1 số chẵn

                  => a=2k \(\left(k\inℤ\right)\)

Ta có (a-2)(a+3)-(a-3)(a+20)= (2k-2)(2k+3)-(2k-3)(2k+20)= 2(k-1)(2k+3)-(2k-3).2(k+10)

                                                                                            = 2. [(k-1)(2k+3)-(2k-3)(k+10)] \(⋮2\)

                     => (a-2)(a+3)-(a-3)(a+20) là 1 số chẵn.

 + Trường hợp 2: a là 1 số lẻ

                  => a=2k+1 \(\left(k\inℤ\right)\)

Ta có (a-2)(a+3)-(a-3)(a+20)=(2k+1-2)(2k+1+3)-(2k+1-3)(2k+1+20)=(2k-1).2(k+2)-2(k-1)(2k+21)

                                                                                                           = 2.[(2k-1)(k+2)-(k-1)(2k+21)] \(⋮2\)

                      => (a-2)(a+3)-(a-3)(a+20) là 1 số chẵn.

Vậy nếu a\(\inℤ\)thì  N=(a-2)(a+3)-(a-3)(a+20) là 1 số chẵn

Bạn tham khảo bài làm của mik nhé!!! k cho mik nha

Khách vãng lai đã xóa
TRÂN LÊ khánh
Xem chi tiết
Yukru
20 tháng 7 2018 lúc 9:11

a) \(\left(n+6\right)^2-\left(n-6\right)^2\)

\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)

\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)

\(=12.2n\)

\(=24n\)

Vì 24n chia hết cho 24 với mọi n

=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)

b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.

\(n^2+4n+3\)

\(=n^2+n+3n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)

\(=\left(n+3\right)\left(n+1\right)\)

Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )

Thay n = 2k + 1 vào ta được

\(\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=2\left(k+2\right)2\left(k+1\right)\)

\(=4\left(k+2\right)\left(k+1\right)\)

Vì (k + 2)(k + 1) là tích của hai số liên tiếp

=> (k + 2)(k + 1) chia hết cho 2

=> 4(k + 2)(k + 1) chia hết cho 8

=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )

c) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)

\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)

\(=4\left(2n+2\right)\)

\(=4.2\left(n+1\right)\)

\(=8\left(n+1\right)\)

Vì 8(n + 1) chia hết cho 8 với mọi n

=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )

trần thị mai
Xem chi tiết
๖ACE✪Hoàngミ★Việtツ
18 tháng 8 2017 lúc 7:31

 Cách 1:Nếu biết dùng p2 quy nạp thì có 1 cách giải được bài này: 
*với n=1 ta có :1.2.3 chia hết cho 6 
*Giả sử với n=k mênh đề đúng: k(k+1)(2k+1) chia hết cho 6 
-> với n=k+1 ta có: (k+1)(k+2)(2(k+1)+1) 
=(k+1)(k+2)(2k+3) 
=2k(k+1)(k+2)+3(k+1)(k+2) (1) 
vi k(k+1)(K+2) chia hết cho 6 (ở trên) 
và (k+1)(k+2) là hai số liên tiếp nên 3(k+1)(k+2) chia hết cho 6 
=> (1) luôn chia hết cho 6 
=> mênh đề đúng với mọi n thuộc Z 


cách 2: 
n(n+1)(2n+1) 
=n(n+1)(n+2+n-1) 
=n(n+1)(n+2) + (n-1)n(n+1) (2) 
vì tích 3 số liên tiếp chia hết cho 6 
từ (2) ta có tổng của hai số chia hết cho 6 thì cũng chia hết cho 6 
=> biểu thức trên đúng với mọi n thuộc Z 
Chúc sớm tìm được thêm nhiều lời giải nha!

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

Thúy Ngân
17 tháng 8 2017 lúc 17:51

Theo đề ta có :

n(n + 5) - (n - 3)( n + 2 ) = n.n + 5.n - (n.n + 2.n -3.n - 3.2)

= n\(^2\) + 5n - ( n\(^2\) + 2n - 3n - 6)

= n\(^2\) + 5n - n\(^2\) - 2n + 3n  + 6 

= (n \(^2\) - n\(^2\)) + ( 5n - 2n + 3n) +6

= 0 + 6n +6

= 6(n+1) luôn luôn chia hết cho 6

Vậy biểu thức   n(n + 5) - (n - 3)(n + 2)  luôn luôn chia hết cho 6 (đpcm)

k vs kb với mik nhé,      3     

๖ACE✪Hoàngミ★Việtツ
17 tháng 8 2017 lúc 17:41

 Cách 1:Nếu biết dùng p2 quy nạp thì có 1 cách giải được bài này: 
*với n=1 ta có :1.2.3 chia hết cho 6 
*Giả sử với n=k mênh đề đúng: k(k+1)(2k+1) chia hết cho 6 
-> với n=k+1 ta có: (k+1)(k+2)(2(k+1)+1) 
=(k+1)(k+2)(2k+3) 
=2k(k+1)(k+2)+3(k+1)(k+2) (1) 
vi k(k+1)(K+2) chia hết cho 6 (ở trên) 
và (k+1)(k+2) là hai số liên tiếp nên 3(k+1)(k+2) chia hết cho 6 
=> (1) luôn chia hết cho 6 
=> mênh đề đúng với mọi n thuộc Z 


cách 2: 
n(n+1)(2n+1) 
=n(n+1)(n+2+n-1) 
=n(n+1)(n+2) + (n-1)n(n+1) (2) 
vì tích 3 số liên tiếp chia hết cho 6 
từ (2) ta có tổng của hai số chia hết cho 6 thì cũng chia hết cho 6 
=> biểu thức trên đúng với mọi n thuộc Z 

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

Hằng Ngốk
Xem chi tiết
Bi Bi Di
Xem chi tiết