Chứng minh rằng:
(3^n+3 +3^n+1 +3^n+3 +3^n+2)
Giúp Mk với nha... Cảm ơn trước nhé
với đk n thuộc z+
Cho biểu thức S= 3/1.4+3/4.7+3/7.10+....+3/n.(n+3) (với n thuộc N*)
Chứng minh rằng S<1.
GIÚP MIK NHA CẢM ƠN MN.
Ta có
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)
\(S=1-\frac{1}{n+3}< 1\)(vì n thuộc N*)
_Kudo_
Bài làm
S= 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/n. (n+3)
=1/1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ... +1/(n-3) - 1/n +1/n - 1/(n+3)
=1/1 + ( - 1/4 + 1/4 - 1/7 + 1/7 - ... -1/n + 1/n ) -1/ (n+3)
= 1 + 0 - 1/(n+3)
= 1 - 1/(n+3)
Mà 1 - 1/(n+3) < 1
Vậy S < 1
Mk trình bày ko đc chi tiết lắm ,sorry bạn nha
1. 3.5.....(2n-1)/(n+1)(n+2)(n+3) = 1/2n với n thuộc n*
( đề bài là chứng minh rằng )
giúp mình với cảm ơn
Chứng minh rằng số A=(n+1).(3.n+2) luôn chia hết cho 2 với mọi số tự nhiên n (.là dấu nhân)
Giúp mình lẹ nha mình đang cần gấp .Mình cảm ơn trước nha
Chứng minh với mọi n thuộc N thì:2^5n+3+5^n x 3^n+2 chia hết cho 17
Cố gắng xong trong ngày 6/3/2016 nha!Cảm ơn trước!!!!!
Chứng minh rằng nếu a thuộc Z thì:
N=(a-2).(a+3)-(a-3).(a+20) là số chẵn
Làm giúp mk bài này nha,mk đang cần gấp.Cảm ơn mn nhiều :3
sửa đề: N=(a-2)(a+3)-(a-3)(a+2)
=(a2+3a-2-6)-(a2+2a-3a-6)
=a2+a-6-a2+a+6=2a là số chẵn với mọi a thuộc Z
C1: nếu a chẳn thì (a-2) và (a+20) là số chẳn. Do đó (a-2)(a+3) và (a-3)(a+20) chẳn nên N chẳn.
nếu a lẻ thì (a+3) và (a-3) là số chẳn. Do đó (a-2)(a+3) và (a-3)(a+20) chẳn nên N chẳn.
C2:
vì a thuộc Z nên a có thể viết bằng: a = 2n hoặc a = 2n+1.
Nếu a = 2n thì N=(2n-2)(2n+3) - (2n-3)(2n+20) = 2*[(n-1)(2n+3) - (2n-3)(n+10)]. Do đó N là số chẳn.
Nếu a= 2n+1 thì N =(2n+1 -2)(2n+1+3) -(2n+1-3)(2n+1+20) = 2*[(2n-1)(n+1) - (n-1)(2n+21)]. Do đó N là số chẳn.
Kết luận: N chẳn với mọi a.(DPCM)
Xét 2 trường hợp:
+ Trường hợp 1: a là 1 số chẵn
=> a=2k \(\left(k\inℤ\right)\)
Ta có (a-2)(a+3)-(a-3)(a+20)= (2k-2)(2k+3)-(2k-3)(2k+20)= 2(k-1)(2k+3)-(2k-3).2(k+10)
= 2. [(k-1)(2k+3)-(2k-3)(k+10)] \(⋮2\)
=> (a-2)(a+3)-(a-3)(a+20) là 1 số chẵn.
+ Trường hợp 2: a là 1 số lẻ
=> a=2k+1 \(\left(k\inℤ\right)\)
Ta có (a-2)(a+3)-(a-3)(a+20)=(2k+1-2)(2k+1+3)-(2k+1-3)(2k+1+20)=(2k-1).2(k+2)-2(k-1)(2k+21)
= 2.[(2k-1)(k+2)-(k-1)(2k+21)] \(⋮2\)
=> (a-2)(a+3)-(a-3)(a+20) là 1 số chẵn.
Vậy nếu a\(\inℤ\)thì N=(a-2)(a+3)-(a-3)(a+20) là 1 số chẵn
Bạn tham khảo bài làm của mik nhé!!! k cho mik nha
chứng minh rằng:
a) (n+6)^2-(n-6)^2 chia hết cho 24 với mọi n thuộc Z
b) n^2+4n+3 chia hết cho 8 với mọi n thuộc Z
c) (n+3)^2-(n-1)^2 chia hết cho 8 với mọi
giải chi tiết,cảm ơn!
a) \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)
\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)
\(=12.2n\)
\(=24n\)
Vì 24n chia hết cho 24 với mọi n
=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)
b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.
\(n^2+4n+3\)
\(=n^2+n+3n+3\)
\(=n\left(n+1\right)+3\left(n+1\right)\)
\(=\left(n+3\right)\left(n+1\right)\)
Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )
Thay n = 2k + 1 vào ta được
\(\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=2\left(k+2\right)2\left(k+1\right)\)
\(=4\left(k+2\right)\left(k+1\right)\)
Vì (k + 2)(k + 1) là tích của hai số liên tiếp
=> (k + 2)(k + 1) chia hết cho 2
=> 4(k + 2)(k + 1) chia hết cho 8
=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )
c) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)
\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)
\(=4\left(2n+2\right)\)
\(=4.2\left(n+1\right)\)
\(=8\left(n+1\right)\)
Vì 8(n + 1) chia hết cho 8 với mọi n
=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )
Chứng minh rằng biểu thức n(n + 5) - (n - 3)(n + 2) luôn luôn chia hết cho 6 (điều kiện n thuộc Z)
CÁC BẠN GIÚP MÌNH GIẢI NHANH NHA ! ___ Mai mình phải nộp bài rùi!!! x_xhic!!! ~
CẢM ƠN TRƯỚC NHA!!!!! _________Thanks !__________^ 0 ^ ~~~
Cách 1:Nếu biết dùng p2 quy nạp thì có 1 cách giải được bài này:
*với n=1 ta có :1.2.3 chia hết cho 6
*Giả sử với n=k mênh đề đúng: k(k+1)(2k+1) chia hết cho 6
-> với n=k+1 ta có: (k+1)(k+2)(2(k+1)+1)
=(k+1)(k+2)(2k+3)
=2k(k+1)(k+2)+3(k+1)(k+2) (1)
vi k(k+1)(K+2) chia hết cho 6 (ở trên)
và (k+1)(k+2) là hai số liên tiếp nên 3(k+1)(k+2) chia hết cho 6
=> (1) luôn chia hết cho 6
=> mênh đề đúng với mọi n thuộc Z
cách 2:
n(n+1)(2n+1)
=n(n+1)(n+2+n-1)
=n(n+1)(n+2) + (n-1)n(n+1) (2)
vì tích 3 số liên tiếp chia hết cho 6
từ (2) ta có tổng của hai số chia hết cho 6 thì cũng chia hết cho 6
=> biểu thức trên đúng với mọi n thuộc Z
Chúc sớm tìm được thêm nhiều lời giải nha!
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
Theo đề ta có :
n(n + 5) - (n - 3)( n + 2 ) = n.n + 5.n - (n.n + 2.n -3.n - 3.2)
= n\(^2\) + 5n - ( n\(^2\) + 2n - 3n - 6)
= n\(^2\) + 5n - n\(^2\) - 2n + 3n + 6
= (n \(^2\) - n\(^2\)) + ( 5n - 2n + 3n) +6
= 0 + 6n +6
= 6(n+1) luôn luôn chia hết cho 6
Vậy biểu thức n(n + 5) - (n - 3)(n + 2) luôn luôn chia hết cho 6 (đpcm)
k vs kb với mik nhé, 3
Cách 1:Nếu biết dùng p2 quy nạp thì có 1 cách giải được bài này:
*với n=1 ta có :1.2.3 chia hết cho 6
*Giả sử với n=k mênh đề đúng: k(k+1)(2k+1) chia hết cho 6
-> với n=k+1 ta có: (k+1)(k+2)(2(k+1)+1)
=(k+1)(k+2)(2k+3)
=2k(k+1)(k+2)+3(k+1)(k+2) (1)
vi k(k+1)(K+2) chia hết cho 6 (ở trên)
và (k+1)(k+2) là hai số liên tiếp nên 3(k+1)(k+2) chia hết cho 6
=> (1) luôn chia hết cho 6
=> mênh đề đúng với mọi n thuộc Z
cách 2:
n(n+1)(2n+1)
=n(n+1)(n+2+n-1)
=n(n+1)(n+2) + (n-1)n(n+1) (2)
vì tích 3 số liên tiếp chia hết cho 6
từ (2) ta có tổng của hai số chia hết cho 6 thì cũng chia hết cho 6
=> biểu thức trên đúng với mọi n thuộc Z
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
mọi người giúp mk vs nha,mk đang cần gắp lắm ạ
1.chứng minh rằng với mọi n thuộc N số A=9n^2+27n+7 không thể là lập phương đúng
2.tìm n thuộc N sao cho 9+2^n là số chính phương
3.tìm n thuộc N sao cho 3^n+19 là số chính phương
4.tìm n thuộc Z sao cho n^4+2n^3+2n^2+n+7 là số chính phương
Chững minh rằng A là số chính phương biết rằng:
A=1+3+5+7+...+(2n-1)với n thuộc N*
Ai trả lời nhanh mk tick nha. Cảm ơn các bạn trước
Câu trả lời rõ ràng nha!