Chứng minh rằng:
1/3 + 1/7 + 1/13 + 1/21 + 1/31 + 1/43 +....+1/91 <1
Chứng minh rằng \(\frac{1}{3}+\frac{1}{7}+\frac{1}{13}+\frac{1}{21}+\frac{1}{31}+\frac{1}{43}+\frac{1}{57}+\frac{1}{73}+\frac{1}{91}< 1\)
Bài làm
Ta đặt M=1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91
Vậy M<1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
M< 1/2+1/2x3+1/3x4+1/4x5+1/5x6+1/6x7+1/7x8+1/8x9+1/9x10
M< (1-1/2) +(1/2-1/3) +(1/3-1/4) +(1/4-1/5) +(1/5-1/6) +(1/6-1/7) +(1/7-1/8) +(1/8-1/9) +(1/9-1/10)
M< 1-1/10 < 9/10 (1)
Vì 9/10 < 1 (2)
Từ(1) và (2) ta có : 1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91<1
Bài 1: Chứng minh rằng
1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91<1
Bài 2: So sánh với 1
1/4+1/9+1/16+1/25+....+1/10000
Bài 1: CMR:1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91<1
Giải
Ta đặt M=1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91
Vậy M<1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
M< 1/2+1/2x3+1/3x4+1/4x5+1/5x6+1/6x7+1/7x8+1/8x9+1/9x10
M< (1-1/2) +(1/2-1/3) +(1/3-1/4) +(1/4-1/5) +(1/5-1/6) +(1/6-1/7) +(1/7-1/8) +(1/8-1/9) +(1/9-1/10)
M< 1-1/10 < 9/10 (1)
Vì 9/10 < 1 (2)
Từ(1) và (2) ta có : 1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91<1
Bài 2:So sánh với 1: 1/4+1/9+1/16 + 1/25 +...+1/10000
Giải
Ta đặt M =1/4+1/9+1/16 + 1/25 +...+1/10000
Hay M = 1/2X2+ 1/3X3+1/4X4+1/5X5 +...+1/100X100
M< 1/1x2+ 1/2x3+1/3x4+1/4x5+...+1/99x100
M< (1-1/2) +(1/2-1/3) +(1/3-1/4) +(1/4-1/5)+...+(1/99-1/100)
M< 1-1/100 < 99/100 (1)
Vì 99/100 < 1 (2)
Từ(1) và (2) ta có : 1/4+1/9+1/16 + 1/25 +...+1/10000 <1
Chứng minh rằng : \(\frac{1}{3}+\frac{1}{7}+\frac{1}{13}+\frac{1}{21}+\frac{1}{31}+\frac{4}{43}+\frac{1}{57}+\frac{1}{73}+\frac{1}{91}<1\)
( lời giải chi tiết nha , mình đang cần gấp )
Giải:
Vì
Nên ta phải chứng minh:
=> ( điều phải chứng minh)
Vì
Nên ta phải chứng minh:
=> ( điều phải chứng minh)
Bài 1: Tính nhanh:5/6+11/12+19/20+41/42+55/56+71/72+89/90
Bài 2:Tính nhanh: (1/1+2)+(1/1+2+3)+(1/1+2+3+4)+...+=1/1+2+3+...+50
Bài 3:Chứng minh rằng 1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91<1
Hãy chứng minh rằng tổng 1/3+1/7+1/13+1/21+1/91+1/111 bé hơn 1
Hãy chứng tỏ rằng tổng :
1/3+1/7+1/13+1/21+.....+1/91+1/111<1
Đặt A = 1/3 + 1/7 + 1/13 + 1/21 + ... + 1/91 + 1/111
A < 1/2 + 1/6 + 1/12 + 1/20 + ... + 1/90 + 1/110
A < 1/1×2 + 1/2×3 + 1/3×4 + 1/4×5 + ... + 1/9×10 + 1/10×11
A < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/9 - 1/10 + 1/10 - 1/11
A < 1 - 1/11 < 1
=> đpcm
Ủng hộ mk nha ☆_☆^_-
Tìm x,y biết:
a) 1/5.8+1/8.11+1/11.14+...+1/y(y+3).=98/1545
b) 2x+7/6+13/12+21/20+31/30+43/42+57/56+73/72+91/90 = 0
Chứng minh rằng :
B = 1/21 + 1/31 + 1/43 +...+ 1/211 <1
\(B=\frac{1}{21}+\frac{1}{31}+\frac{1}{43}+...+\frac{1}{211}< \frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{210}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{14.15}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{14}-\frac{1}{15}\)
\(=\frac{1}{4}-\frac{1}{15}\)
\(=\frac{15}{60}-\frac{4}{60}\)
\(=\frac{11}{60}< \frac{60}{60}=1\)
Vậy \(B< 1\)
so sánh A với 1
A=1/3+1/7+1/13+1/21+1/31+1/43+1/57