Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NY
Xem chi tiết
NGUYỄN THẾ HIỆP
25 tháng 2 2017 lúc 20:56

ĐỀ SAI NHÉ,PHẢI LÀ (M,N)=1 THÔI

Dễ dàng CM được tính chất sau: 1 số chính phương chia hết cho số nguyên tố p thì chia hết cho \(p^2\)

Quay lại với  bài này: 

Đặt: \(\hept{\begin{cases}m=p_1.p_2...p_i\\n=q_1.q_2...q_j\end{cases}},p_k,q_l\)là các số nguyên tố và do (m,n)=1 => \(p_k\)bất kỳ khác \(q_l\)

Áp dụng trực tiếp tính chất trên ta => m,n là số chính phương

Phạm Minh Phú
Xem chi tiết
Nguyễn Linh Chi
4 tháng 10 2019 lúc 21:38

Câu hỏi của Nguyễn Phương Thảo - Toán lớp 7 - Học toán với OnlineMath

=> \(n+2=p^2\) là số chính phương.

lê duy mạnh
4 tháng 10 2019 lúc 21:38

ta có p^2=(m+n)(m-1)

vì m+n>m-1

>0

m

+n=p^2

m-1=1

suy ra m=2=>n+2=p^2 là số chính phuopwng

THI QUYNH HOA BUI
Xem chi tiết
Bùi Gia Bách
Xem chi tiết
Hồng Hà Thị
Xem chi tiết
Kelly
Xem chi tiết
Nguyễn Khánh Ly
Xem chi tiết
bui huong mo
Xem chi tiết
Đoàn Đức Hà
16 tháng 5 2021 lúc 15:27

Ta có: \(2\left(m^2+n^2\right)-1=2\left(m^2+n^2+2mn\right)-1-4mn=2\left(m+n\right)^2-1-4mn\)

\(=2\left[\left(m+n\right)^2-1\right]-4mn+1=2\left(m+n-1\right)\left(m+n+1\right)-4mn+1-4m^2-4m+4m^2+4m\)

\(=2\left(m+n+1\right)\left(-m+n-1\right)+\left(2m+1\right)^2\)

Suy ra \(\left(2m+1\right)^2⋮\left(m+n+1\right)\)mà \(m+n+1\)nguyên tố nên \(2m+1⋮m+n+1\)

do \(m,n\)nguyên dương suy ra \(2m+1\ge m+n+1\Leftrightarrow m\ge n\).

Một cách tương tự ta cũng suy ra được \(n\ge m\).

Do đó \(m=n\).

Khi đó \(mn=m^2\)là một số chính phương. 

Khách vãng lai đã xóa
bui huong mo
16 tháng 5 2021 lúc 15:33

thank you

Khách vãng lai đã xóa
Nguyễn Hoàng Long
Xem chi tiết