Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
toants2
Xem chi tiết
toants2
21 tháng 7 2021 lúc 9:27

nhanh lên với ak

HT2k02
21 tháng 7 2021 lúc 9:29

Ta có :

a^3+b^3+c^3-3abc

=(a+b)^3+c^3-3ab(a+b) - 3abc

=(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)

=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

=> 2(a^3+b^3+c^3-3abc)= (a+b+c)(2a^2+2b^2+2c^2-2ab-2bc-2ca)

=(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]

Trần Thiện Khiêm
Xem chi tiết
Trần Thiện Khiêm
Xem chi tiết
Trần Thiện Khiêm
Xem chi tiết
Linh Chi
Xem chi tiết
Nguyễn Văn Trường
6 tháng 7 2016 lúc 16:00

xem lại đề

Linh Chi
7 tháng 7 2016 lúc 22:13

đề đúng nè nhưng k biết làm -.-

Quang Nguyễn
Xem chi tiết
Trần Thiện Khiêm
Xem chi tiết
Tuyển Trần Thị
Xem chi tiết
Nguyễn Thiều Công Thành
1 tháng 10 2017 lúc 19:39

easy

\(VT\ge\frac{8}{\left(a+b\right)^2+\left(a+b\right)^2c}+\frac{8}{\left(b+c\right)^2+\left(b+c\right)^2c}+\frac{8}{\left(c+a\right)^2+\left(c+a\right)^2b}+\frac{\left(a+b\right)^2}{4}+\frac{\left(b+c\right)^2}{4}+\frac{\left(c+a\right)^2}{4}\)

\(=\frac{8}{\left(a+b\right)^2\left(c+1\right)}+\frac{8}{\left(b+c\right)^2\left(a+1\right)}+\frac{8}{\left(c+a\right)^2\left(b+1\right)}+\frac{\left(a+b\right)^2}{4}+\frac{\left(b+c\right)^2}{4}+\frac{\left(c+a\right)^2}{4}\)

đến đây ghép rồi dùng cô si

bài này trong đề thi của tỉnh nào đó ở nước nào đó ở hành tinh nào đó năm 2016-2017

trần gia bảo
13 tháng 4 2019 lúc 22:54

bạn làm luôn khúc sau dùm mik nhé, mik ko hiểu

Kiệt Nguyễn
10 tháng 7 2020 lúc 19:43

Ta có bất đẳng thức quen thuộc sau \(4ab\le\left(a+b\right)^2\). Như vậy thì:\(\frac{8}{\left(a+b\right)^2+4abc}\ge\frac{8}{\left(a+b\right)^2+c\left(a+b\right)^2}\)\(=\frac{8}{\left(c+1\right)\left(a+b\right)^2}\)

 Lại có \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)nên \(\frac{8}{\left(a+b\right)^2+4abc}+\frac{a^2+b^2}{2}\)\(\ge\frac{8}{\left(c+1\right)\left(a+b\right)^2}+\frac{\left(a+b\right)^2}{4}\ge\frac{2\sqrt{2}}{\sqrt{c+1}}\)(Theo BĐT AM - GM)

Lại áp dụng BĐT AM - GM, ta được: \(\frac{2\sqrt{2}}{\sqrt{c+1}}=\frac{8}{2\sqrt{2\left(c+1\right)}}\ge\frac{8}{c+3}\)

Từ đó suy ra \(\frac{8}{\left(a+b\right)^2+4abc}+\frac{a^2+b^2}{2}\ge\frac{8}{c+3}\)(1)

Tương tự, ta có: \(\frac{8}{\left(b+c\right)^2+4abc}+\frac{b^2+c^2}{2}\ge\frac{8}{a+3}\)(2) ; \(\frac{8}{\left(c+a\right)^2+4abc}+\frac{c^2+a^2}{2}\ge\frac{8}{b+3}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{8}{\left(a+b\right)^2+4abc}+\frac{8}{\left(b+c\right)^2+4abc}+\frac{8}{\left(c+a\right)^2+4abc}\)\(+a^2+b^2+c^2\ge\frac{8}{a+3}+\frac{8}{b+3}+\frac{8}{c+3}\)

Đẳng thức xảy ra khi a = b = c = 1

Khách vãng lai đã xóa
Lizy
Xem chi tiết
meme
12 tháng 9 2023 lúc 14:11

(a(b-c)^2 + b(c-a)^2 + c(a-b)^2) - (a^3 + b^3 + c^3) + 4abc

= a(b^2 - 2bc + c^2) + b(c^2 - 2ac + a^2) + c(a^2 - 2ab + b^2) - (a^3 + b^3 + c^3) + 4abc

= ab^2 - 2abc + ac^2 + bc^2 - 2abc + ba^2 + ca^2 - 2abc + cb^2 - a^3 - b^3 - c^3 + 4abc

= ab^2 + ac^2 + bc^2 + ba^2 + ca^2 + cb^2 - a^3 - b^3 - c^3 + 4abc - 6abc

= a(b^2 + c^2 + a^2) + b(a^2 + c^2 + b^2) + c(a^2 + b^2 + c^2) - (a^3 + b^3 + c^3) - 2abc

= a^3 + b^3 + c^3 + a^2b + ab^2 + a^2c + ac^2 + b^2c + bc^2 - a^3 - b^3 - c^3 - 2abc

= a^2b + ab^2 + a^2c + ac^2 + b^2c + bc^2 - 2abc

= ab(a + b) + ac(a + c) + bc(b + c) - 2abc

= (a + b)(ab - ac + bc) - 2abc

Vậy, ta có thể viết bài toán dưới dạng nhân tử là: (a + b)(ab - ac + bc) - 2abc.