Cho: \(A=\frac{3}{4}+\frac{8}{9}+...+\frac{9999}{10000}\). So sánh A với 99
So sánh giá trị của biểu thức: A=\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)
với các số 98 và 99
A = \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+........+\frac{9999}{10000}\)
SO SÁNH A VỚI 98
AI NHANH TK
Ta có : \(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{10000-1}{10000}\)
\(=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{100^2-1}{100^2}\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\left(99\text{ số hạng 1}\right)\)
\(=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\right)\)
\(=99-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\right)=99-\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(=99-\frac{99}{202}>99-\frac{1}{2}=98,5\)
=> A > 98,5
=> A > 98
Cho \(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)
\(B=99\)
So sánh A và B
bài 17: Cho A = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}..........\frac{9999}{10000}.\)Hãy so sánh A với 0,01
\(A=\frac{1}{2}\times\frac{3}{4}......\frac{9999}{10000}\)
Đặt : \(B=\frac{2}{3}\times\frac{4}{5}\times\frac{6}{7}.......\frac{10000}{10001}\)
Vì \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};.....\frac{9999}{10000}< \frac{10000}{10001}\)
Nên A<B mà A>0; B>0
\(\Rightarrow A^2< A\times B=\left(\frac{1}{2}\times\frac{3}{4}\times\frac{5}{6}.....\frac{9999}{10000}\right)\times\left(\frac{2}{3}\times\frac{4}{5}\times\frac{6}{7}......\frac{10000}{10001}\right)\)\(=\frac{1}{2}\times\frac{2}{3}\times\frac{4}{5}......\frac{9999}{10000}\times\frac{10000}{10001}\)\(=\frac{1}{10001}< \frac{1}{10000}=\frac{1}{100^2}=0.01^2\)\(\Rightarrow A^2< 0.01^2\)hay A < 0.01
Cho A = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9998}{9999}.\frac{10000}{10000}\)
So sánh A và 0,01
Đặt A = \(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{9998}{9999}.\frac{10000}{10000}\)
Rõ ràng A < A'
=> A2 < A . A' \(=\frac{1}{10000}=\frac{1}{100^2}\)
Nên A < 0,01
Cho A=\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}\)
So sánh A với 0,01.
Cho A= \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.......\frac{9999}{10000}\)
so sánh A với 0,01
A<2/3*4/5*6/7...10000/10001
A^2<A*(2/3*4/5*6/7...10000/10001)
A^2<\(\frac{1\cdot2\cdot3\cdot4\cdot5\cdot6...9999\cdot10000}{2\cdot3\cdot4\cdot5\cdot6\cdot7...10000\cdot10001}\)
A^2<1/10001
0,01=1/100
1/100^2=1/10000
A^2<1/10001<1/10000
Cho A = \(\frac{1}{2}\times\frac{3}{4}\times\frac{5}{6}\times.......\times\frac{9999}{10000}\). So sánh A với 0.01
lớn hơn vì ta có thể thấy: các số như 1/2,3/4,5/6 đã lớn hơn 0,01
khi ta X len ta se duoc ket qua > 0,01
duyet minh nha
1/2 X 3/4 X 5/6 X .....X 9999/10000 > 0,01
So sánh A= 3/4+8/9+15/16+...+9999/10000 với các số 98 và 99