Tìm GTNN của A=\(\frac{3}{-x^2+5x-1}\) với \(\frac{3}{2}< x< \frac{7}{2}\)
tìm GTNN
A.\(\frac{x^2+2x+3}{x+1}\)
với x>-1
B.\(\frac{x^2-5x-2}{x-2}\)
với x>2
Áp dụng bđt Cauchy : \(x+1+\frac{2}{x+1}\ge2.\sqrt{\left(x+1\right).\frac{2}{x+1}}=2\sqrt{2}\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x>-1\\x+1=\frac{2}{x+1}\end{cases}\Leftrightarrow}x=\sqrt{2}-1\)
Vậy Min A = \(2\sqrt{2}\)tại \(x=\sqrt{2}-1\)
B không tìm được GTNNHình chữ nhật ABCD và hình bình hành ABEF có đáy chung là AB và có chiều cao bằng nhau, vậy chúng có diện tích bằng nhau.
Suy ra cách vẽ một hình chữ nhật có cùng diện tích với một hình bình hành cho trước:
- Lấy nột cạnh của hình bình hành ABEF làm một cạnh của hình chữ nhật cần vẽ, chẳng hạn cạnh AB.
- Vẽ đường thẳng EF.
- Từ A và b vẽ các đường thẳng vuông góc với đường thẳng EF, chúng cắt đường thẳng EF lần lượt tại D, C. vẽ các đoạn thẳng AD,
BC. ABCD là hình chữ nhật có cùng diện tích với hình bình hành ABEF đã cho
0
1. Tìm GTLN của P=1+\(\frac{1}{x}\)với x≥1
2. Cho x>0, tìm GTNN của P=x+\(\frac{1}{x}\)
3. Cho x>0, tìm GTNN của biểu thức:
\(A=\frac{x^2+x+4}{x+1}\)
4. Cho x>0. Tìm GTNN của P=x2+\(\frac{2}{x}\)
5.Cho x>0. Tìm GTNN của 2x+\(\frac{1}{x^2}\)
6. Tìm GTNN của P=x2-x+\(\frac{1}{x}\)+4 với x>0
7. Cho x≥1. Tìm GTNN của: \(y=\frac{x+2}{x+1}\)
8.Tìm GTLN và GTNN của: \(A=\frac{2x}{x^2+1}\)
1. x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)
2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)
3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)
áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)
x=1 nhe nhap minh di ma ket ban voi minh nhe
Các bạn ơi ,giúp mình mấy bài này với:
BÀI 1: Tính giá trị biểu thức
a) A =6x3_3x2+2* /x/+4 với x=\(\frac{-2}{3}\)
b)B=2*/x/- 3/y/ với x=\(\frac{1}{2};y=-3\)
c)C=\(\frac{5x^2-7x+1}{3x-1}với\)/x/=\(\frac{1}{2}\)
BÀI 2: Tìm x,biết
a) /x-3/=/4-x/
b)/x-1/=2x
BÀI 3: Tìm GTNN của
A=2*/3x-1/-4
Tìm x:
\(a)5x+\frac{1}{2}-x=\frac{2}{3}\)
\(b)\frac{-2}{3}x+\frac{3}{7}+\frac{1}{2}x=\frac{-5}{6}\)
a) \(5x+\frac{1}{2}-x=\frac{2}{3}\)
\(\left(5x-x\right)+\frac{1}{2}=\frac{2}{3}\)
\(4x+\frac{1}{2}=\frac{2}{3}\)
\(4x=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}\)
\(x=\frac{1}{6}\div4\)
\(x=\frac{1}{24}\)
b) \(\frac{-2}{3}x+\frac{3}{7}+\frac{1}{2}x=\frac{-5}{6}\)
\(\left(\frac{-2}{3}x+\frac{1}{2}x\right)+\frac{3}{7}=\frac{-5}{6}\)
\(\frac{-1}{6}x+\frac{3}{7}=\frac{-5}{6}\)
\(\frac{-1}{6}x=\frac{-5}{6}-\frac{3}{7}\)
\(\frac{-1}{6}x=\frac{-53}{42}\)
\(x=\frac{-53}{42}\div\frac{-1}{6}=\frac{53}{7}\)
1)Tìm GTNN của A = 5x^2 + 5y^2 + 6x - 6y - 2xy
2 )\(\frac{109-x}{91}+\frac{107-x}{93}+\frac{105-x}{95}+\frac{103-x}{97}=-4\)Tìm x
(109-x)/91+(107-x)/93+(105-x)/95+(103-x)/97=-4
[(109-x)/91 +1]+[(107-x)/93 +1]+[(105-x)/95 +1]+[(103-x)/97 +1]-4=-4
(109+91-x)/91+(107+93-x)/93+(105+95-x)/95+(103+97-x)/97=-4+4
(200-x)/91+(200-x)/93+(200-x)/95+(200-x)/97=0
(200-x)(1/91+1/93+1/95+1/97)=0
Ma : 1/91+1/93+1/95+1/97\(\ne\)0
=>200-x=0
=>x=200
1. Tìm GTNN của A= \(\frac{x^2-2x+2018}{x^2}\)
2. Tìm GTLN của B=\(\frac{3x^2+9x+17}{3x^2+9x+7}\)
3. Tìm GTLN của M= \(\frac{3x^2+14}{x^2+4}\)
4. Cho x+y=2. Tìm GTNN của A= \(x^3+y^3+2xy\)
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
ê viết lộn dòng này :v
\(MinA=\frac{2017}{2018}\)nha
xho x, y, z là các số dương thoả mãn x^2+y^2+z^2>=1/3
Tìm GTNN của biểu thức
\(A=\frac{x^3}{2x+3y+5z}+\frac{y^3}{2y+3z+5x}+\frac{z^3}{2z+3x+5y}\)
Giúp mình với ạ
1. Tìm điều kiện xác định của mỗi phương trình sau
a) \(\frac{2x-1}{x-3}\)- \(\frac{5x+2}{x+7}\) = 13
b) \(\frac{3\left(x+3\right)}{4-x^2}\) + \(\frac{1}{2+x}\) = \(\frac{5x+9}{x-3}\)
c) \(\frac{2x-1}{x+3}\) - \(\frac{5x-2}{2x-7}\) = 13
d) \(\frac{3\left(x+3\right)}{x^2+2x}\) + \(\frac{1}{1+x}\) = \(\frac{5x+9}{x^2-1}\)
Tìm GTNN,GTLN của A= \(\frac{x^2}{x^2-5x+7}\)
Ta có
\(A\left(x^2-5x+7\right)=x^2\)
\(\Leftrightarrow x^2\left(A-1\right)-5Ax+7A=0\)
Để pt này có nghiệm thì \(\Delta\ge0\)
\(\Leftrightarrow25A^2-4.7.\left(A-1\right)\ge0\)
\(\Leftrightarrow3A^2-28A\le0\)
\(\Leftrightarrow0\le A\le\frac{28}{3}\)
Vậy A đạt GTNN là 0 khi x = 0, đạt GTLN là \(\frac{28}{3}\)khi x = \(\frac{14}{5}\)