So sánh 2 căn thức sau :
\(\sqrt{54}\)và \(9-\sqrt{27}\)
Admin giúp em nha
So sánh 2 căn thức sau :
\(\sqrt{\frac{81}{25}-\frac{2}{7}}\)và \(\frac{9}{5}-\frac{2}{7}\)
Admin giúp em nha
Ta có : \(\sqrt{\frac{81}{25}-\frac{2}{7}}< \sqrt{\frac{81}{25}}\)
\(\Rightarrow\sqrt{\frac{81}{25}-\frac{2}{7}}>\sqrt{\frac{81}{25}}-\frac{2}{7}\)
\(\Rightarrow\sqrt{\frac{81}{25}-\frac{2}{7}}>\frac{9}{5}-\frac{2}{7}\)
1) So sánh hai số sau:
a) căn 54 và 9-căn 27
b)-căn 64+15 và -căn 15-8
c)căn 81 phần 25-8 phần 7 và 9 phần 5 - 8 phần 7
GIÚP MÌNH VỚI NHÉ CÁC BẠN
so sánh giúp mk nha
\(\sqrt{27}+\sqrt{6}và\sqrt{35}\)
\(\sqrt{27}\) + \(\sqrt{6}\)> \(\sqrt{35}\)
căn 27 + căn 6 = 7,196156423
căn 35 = 5,916079783
=>căn 27 + căn 6 > căn 35
Ta có: \(\sqrt{27}+\sqrt{6}=\sqrt{6}+3\sqrt{3}=7,64...\)
Và: \(\sqrt{35}=5,91\)
Vì \(7,64>5,91\)
Vậy \(\sqrt{27}+3\sqrt{3}>\sqrt{35}\)
Ủng hộ mik nha!
Bài toán :
So sánh : \(\sqrt{10}+\sqrt{5}+1\)và \(\sqrt{35}\)
( Sử dụng kiến thức so sánh căn thức lớp 9 )
Lời giải :
\(\sqrt{10}+\sqrt{5}+1>\sqrt{9}+\sqrt{4}+1=3+2+1=6\)
\(\sqrt{35}< \sqrt{36}=6\)
Từ đây ta có : \(\sqrt{10}+\sqrt{5}+1>6>\sqrt{35}\)
Vậy \(\sqrt{10}+\sqrt{5}+1>\sqrt{35}\)
Ta có: \(\sqrt{10}>\sqrt{9}=3;\sqrt{5}>\sqrt{4}=2\)
\(\Rightarrow\sqrt{10}+\sqrt{5}+1>3+2+1=6\)
Mà \(6=\sqrt{36}>\sqrt{35}\)(do 36>35)
\(\Rightarrow\sqrt{10}+\sqrt{5}+1>\sqrt{35}\)
so sánh hai căn thức sau
6 và 4 +\(\sqrt{3}\) và 5+ \(\sqrt{2}\)
\(4+\sqrt{3}< 4+\sqrt{4}=4+2=6\)
Vậy \(6>4+\sqrt{3}\)
1.Phân tích căn thức sau :
\(4+\sqrt{3}< 4+\sqrt{4}=4+2=6\)
2.Cách làm
\(=>6>4+\sqrt{3}\)
3.cuối cùng
~Hk tốt~
Bài 27 (trang 16 SGK Toán 9 Tập 1)
So sánh
a) $4$ và $2\sqrt{3}$ ; b) $-\sqrt{5}$ và $-2$.
a) Ta có:
4>3⇔√4>√3⇔2>√3⇔2.2>2.√3⇔4>2√34>3⇔4>3⇔2>3⇔2.2>2.3⇔4>23
Cách khác:
Ta có:
⎧⎨⎩42=16(2√3)2=22.(√3)2=4.3=12{42=16(23)2=22.(3)2=4.3=12
Vì 16>12⇔√16>√1216>12⇔16>12
Hay 4>2√34>23.
b) Vì 5>4⇔√5>√45>4⇔5>4
⇔√5>2⇔5>2
⇔−√5<−2⇔−5<−2 (Nhân cả hai vế bất phương trình trên với −1−1)
Vậy −√5<−2−5<−2.
a, Ta có : \(4=\sqrt{16}\); \(2\sqrt{3}=\sqrt{4.3}=\sqrt{12}\)
Do 12 < 16 hay \(2\sqrt{3}< 4\)
b, Ta có : \(-2=-\sqrt{4}\)
Do \(4< 5\Rightarrow\sqrt{4}< \sqrt{5}\Rightarrow-\sqrt{4}>-\sqrt{5}\)
Vậy \(-2>-\sqrt{5}\)
a) \(2\sqrt{3}=\sqrt{3\cdot2^2}=\sqrt{12}\); \(4=\sqrt{16}\)
Vì \(\sqrt{12}< \sqrt{16}\)=> \(4>2\sqrt{3}\)
b) \(-2=-\sqrt{4}\)
Vì \(\sqrt{4}< \sqrt{5}\)=> \(-\sqrt{4}>-\sqrt{5}\)hay \(-2>-\sqrt{5}\)
Bài 48 (trang 29 SGK Toán 9 Tập 1)
Khử mẫu của biểu thức lấy căn
$\sqrt{\dfrac{1}{600}}; \sqrt{\dfrac{11}{540}}$ ; $\sqrt{\dfrac{3}{50}} ; \sqrt{\dfrac{5}{98}}$ ; $\sqrt{\dfrac{(1-\sqrt{3})^{2}}{27}}$
\(\sqrt{\dfrac{1}{600}}\)=\(\sqrt{\dfrac{1}{10^2\cdot6}}\)=\(\sqrt{\dfrac{1\cdot6}{10^2\cdot6\cdot6}}\)=\(\dfrac{\sqrt{6}}{60}\)
\(\sqrt{\dfrac{11}{540}}\)=\(\sqrt{\dfrac{11\cdot540}{540\cdot540}}\)=\(\dfrac{\sqrt{5940}}{540}\)=\(\dfrac{\sqrt{165}}{90}\)
\(\sqrt{\dfrac{3}{50}}\)=\(\sqrt{\dfrac{3\cdot50}{50\cdot50}}\)=\(\dfrac{\sqrt{150}}{50}\)=\(\dfrac{\sqrt{6}}{10}\)
\(\sqrt{\dfrac{5}{98}}\)=\(\sqrt{\dfrac{5\cdot98}{98\cdot98}}=\dfrac{\sqrt{490}}{98}=\dfrac{\sqrt{10}}{14}\)
\(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{3-\sqrt{3}}{9}\)
\(\sqrt{\dfrac{1}{600}}=\dfrac{\sqrt{6}}{60}\)
\(\sqrt{\dfrac{11}{540}}=\dfrac{\sqrt{165}}{90}\)
\(\sqrt{\dfrac{3}{50}}=\dfrac{\sqrt{6}}{10}\)
\(\sqrt{\dfrac{5}{98}}=\dfrac{\sqrt{10}}{14}\)
\(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{3-\sqrt{3}}{9}\)
So sánh 2 căn bậc sau:
a)\(_{\sqrt{27}}\) +\(\sqrt{12}\) với 8
b)\(\sqrt{50+2}\) với \(\sqrt{50}\) +\(\sqrt{2}\)
a) \(\sqrt{27}+\sqrt{12}>\sqrt{25}+\sqrt{9}=5+3=8\)
\(\Rightarrow\sqrt{27}+\sqrt{12}>8\)
b) \(\sqrt{50+2}=\sqrt{52}< \sqrt{64}=8\)
\(\sqrt{50}+\sqrt{2}>\sqrt{49}+\sqrt{1}=7+1=8\)
=> \(\sqrt{50+2}< 8< \sqrt{50}+\sqrt{2}\)
\(\Rightarrow\sqrt{50+2}< \sqrt{50}+\sqrt{2}\)
So sánh 2 số sau:
\(a,\frac{23-2\sqrt{19}}{3}\) và \(\sqrt{27}\)
\(b,\sqrt{17}+\sqrt{19}\) và 9
b) có
\(17< 10,25\Rightarrow\sqrt{17}< 4,5\)
\(29< 20,15\Rightarrow\sqrt{19}< 4,5\)
\(\Rightarrow\sqrt{17}+\sqrt{19}< 4,5+4,5=9\)
a) có \(27< 36\)nên \(\sqrt{27}< 6\)
\(\Rightarrow3\sqrt{27}< 18\)(1)
có \(19< 25\Rightarrow\sqrt{19}< 5\Rightarrow23-\sqrt{19}>18\)(2)
từ (1) và (2) suy ra
\(23-\sqrt{19}>3\sqrt{27}\Rightarrow\frac{23-\sqrt{19}}{3}>\sqrt{27}\)
xin lỗi giờ mình mới nghĩ ra câu a