Cho A =\(\frac{3}{2}\)+\(\frac{13}{12}\)+\(\frac{31}{30}\)+...+\(\frac{9901}{9900}\),B=\(\frac{5}{6}\)+\(\frac{19}{20}\)+\(\frac{41}{42}\)+...+\(\frac{10099}{10100}\).Tính A-B
Cho A=\(\frac{3}{2}+\frac{13}{12}+\frac{21}{20}+...+\frac{9901}{9900}\)và B=\(\frac{5}{6}+\frac{19}{20}+\frac{41}{42}+...+\frac{10099}{10100}\)Tính A-B
Tính A-B biết
A=3/2+13/12+31/30+...+9901/9900
B=5/6+19/20+41/42+...+10099/10100
A=3/2+13/12+31/30+...+9901/9900
= 1+1/2+1+1/12+1+1/30+...+1+1/9900
=1+1+1+...+1+1(50 cs)+1/2+1/12+1/30+...+1/9900
=50+1/2+1/12+1/30+...+1/9900
B=5/6+19/20+41/42+...+10099/10100
=(1-1/6)+(1-1/20)+(1-1/42)+...+(1-1/10100)
=1+1+...+1(50cs)-1/6-1/20-1/42-...-1/10100
A-B=(50+1/2+1/12+1/30+...+1/9900)-(50-1/6-1/20-1/42-...-1/10100)
=1/2+1/6+1/12+1/20+...+1/9900+1/10100
=1/1.2+1/2.3+1/3.4+1/4.5+...+1/99.100+1/100.101
=1-1/2+1/2-1/3+1/3-1/4+1/4-...+1/99-1/100+1/100-1/101
=1-1/101
=100/101
B=5/6+19/20+41/42+......+10099/10100 và C= 3/2+13/12+31/30+..........+9901/9900
Tính C - B
\(A=\frac{7}{6}+\frac{13}{12}+\frac{21}{20}+\frac{31}{30}+...+\frac{9901}{9900}\)
\(B=\frac{2}{3}+\frac{5}{6}+\frac{9}{10}+\frac{14}{15}+...+\frac{4949}{4950}\)
\(A=\frac{7}{6}+\frac{13}{12}+\frac{21}{20}+...+\frac{9901}{9900}=\left(1+\frac{1}{2.3}\right)+\left(1+\frac{1}{3.4}\right)+\left(1+\frac{1}{4.5}\right)+...+\left(1+\frac{1}{99.100}\right)\)\(=\left(1+1+1+...+1\right)+\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)
\(=98+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)=98+\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=98+\frac{49}{100}=98\frac{49}{100}\)
Cho A= \(\frac{3}{2}+\frac{13}{12}+\frac{31}{30}+\frac{57}{56}+\frac{91}{90}\)
B= \(\frac{5}{6}+\frac{19}{20}+\frac{41}{42}+\frac{71}{72}+\frac{109}{110}\)
Tính A-B
Ta có:
\(A=\frac{3}{2}+\frac{13}{12}+\frac{31}{30}+\frac{57}{56}+\frac{91}{90}\)
\(=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{12}\right)+\left(1+\frac{1}{30}\right)+\left(1+\frac{1}{56}\right)+\left(1+\frac{1}{90}\right)\)
\(=\left(1+1+1+1+1\right)+\left(\frac{1}{2}+\frac{1}{12}+\frac{1}{30}+\frac{1}{56}+\frac{1}{90}\right)\)
\(=5+\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+\frac{1}{9.10}\right)\)
\(B=\frac{5}{6}+\frac{19}{20}+\frac{41}{42}+\frac{71}{72}+\frac{109}{110}\)
\(=\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{42}\right)+\left(1-\frac{1}{72}\right)+\left(1-\frac{1}{110}\right)\)
\(=\left(1+1+1+1+1\right)-\left(\frac{1}{6}+\frac{1}{20}+\frac{1}{42}+\frac{1}{72}+\frac{1}{110}\right)\)
\(=5-\left(\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{8.9}+\frac{1}{10.11}\right)\)
=> A - B =\(\left[5+\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+\frac{1}{9.10}\right)\right]-\left[5-\left(\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{8.9}+\frac{1}{10.11}\right)\right]\)
= \(5+\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+\frac{1}{9.10}-5+\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{8.9}+\frac{1}{10.11}\)
= \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
= \(1-\frac{1}{11}\)
= \(\frac{10}{11}\)
\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{12}\right)+\left(1+\frac{1}{30}\right)+\left(1+\frac{1}{56}\right)+\left(1+\frac{1}{90}\right)\)
\(B=\left(1-\frac{1}{6}\right)+\left(1-\frac{19}{20}\right)+\left(1-\frac{1}{42}\right)+\left(1-\frac{1}{72}\right)+\left(1-\frac{1}{110}\right)\)
Mk gợi ý đến đây thôi , mk bí rồi đợi mk nghĩ đã!
mk sửa lại 1-1/20 chứ ko phải 1-19/20
\(A=\left(5+\frac{1}{2}+\frac{1}{12}+\frac{1}{30}+\frac{1}{56}+\frac{1}{90}\right)\)
\(B=\left(5-\frac{1}{6}-\frac{1}{20}-\frac{1}{42}-\frac{1}{72}-\frac{1}{110}\right)\)
\(A-B=\left(5+\frac{1}{2}+\frac{1}{12}+\frac{1}{30}+\frac{1}{56}+\frac{1}{90}\right)-\left(5-\frac{1}{6}+\frac{1}{20}+\frac{1}{42}+\frac{1}{72}+\frac{1}{110}\right)\)
\(A-B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\)
\(A-B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\)
\(A-B=1-\frac{1}{11}\)
\(A-B=\frac{10}{11}\)
A=
\(A=\frac{3}{2}-\frac{5}{6}+\frac{13}{12}-\frac{21}{20}+\frac{31}{30}-\frac{41}{42}+\frac{57}{56}-\frac{71}{72}+\frac{91}{90}-\frac{109}{110}\)
\(A=\frac{3}{2}-\frac{5}{6}+\frac{13}{12}-\frac{19}{20}+\frac{31}{30}-\frac{41}{42}+\frac{57}{56}-\frac{71}{72}+\frac{91}{90}-\frac{109}{110}\)
\(\Rightarrow A=\left(1+\frac{1}{2}\right)-\left(1-\frac{1}{6}\right)+\cdot\cdot\cdot+\left(1+\frac{1}{90}\right)-\left(1-\frac{1}{110}\right)\)
\(\Rightarrow A=1+\frac{1}{2}-1+\frac{1}{6}+\cdot\cdot\cdot+1+\frac{1}{90}-1+\frac{1}{110}\)
\(\Rightarrow A=\left[\left(1-1\right)+\frac{1}{2}+\frac{1}{6}\right]+\cdot\cdot\cdot+\left[\left(1-1\right)+\frac{1}{90}+\frac{1}{110}\right]\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{6}+\cdot\cdot\cdot+\frac{1}{90}+\frac{1}{110}\)
\(\Rightarrow A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{10}-\frac{1}{11}\)
\(\Rightarrow A=1-\frac{1}{11}\)
\(\Rightarrow A=\frac{10}{11}\)
a) \(\frac{5}{12}+\frac{5}{20}+\frac{5}{30}+...+\frac{5}{9900}\)
b) \(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
c) \(\frac{7}{6}+\frac{13}{12}+\frac{21}{20}+...+\frac{91}{90}\)
d) \(\left(6-\frac{2}{3}+\frac{1}{2}\right)-\left(5+\frac{5}{3}-\frac{2}{3}\right)-\left(3-\frac{7}{3}+\frac{5}{2}\right)\)
Mấy câu như này tách ra kiểu gì?
\(\frac{5}{12}+\frac{5}{20}+\frac{5}{30}+...+\frac{5}{9900}=\frac{5}{3.4}+\frac{5}{4.5}+\frac{5}{5.6}+...+\frac{5}{99.100}\)
\(5\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(5\left(\frac{1}{3}-\frac{1}{100}\right)=\frac{97}{60}\)
\(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+...+\frac{71}{72}+\frac{89}{90}=1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=8-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=8-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{10}\right)=8-\frac{2}{5}=\frac{38}{5}\)
Tính nhanh
\(A=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)
Tính tổng :
\(A=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)