cho 3 số dương a,b và c chừng minh rằng (a+b)(ab+1)>=0
1.a)Cho các số dương a,b,c có tích bằng 1.Chứng minh rằng (a+1)(b+1)(c+1) lớn hơn hoặc bằng 8.
b)Chocacs số a và b không âm.Chứng minh rằng (a+b)(ab+1) lớn hơn hoặc bằng 4ab.
2.Cho các số dương a,b,c,d có tích bằng 1.Chứng minh rằng a bình +b bình +c bình +d bình +ab+cd lớn hơn hoặc bằng 6.
3.Chứng minh rằng nếu a+b+c>0.abc>0.ab+bc+ca>0 thì a>0,b>0,c>0.
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
sai rồi. sửa a+b=a+1, b+c=b+1, a+c=c+1 nha, thông cảm, nhìn sai đề
Cho 3 số a; b; c thỏa mãn: 1/ab + 1/ac + 1/bc > 0 và ab + ac + bc > 0. Chứng minh rằng 3 số a; b; c cùng âm hoặc cùng dương
cho 3 số dương 0≤a≤b≤c≤1 chứng minh rằng (a/bc+1)+(b/bc+1)+(c/ab+1)≤2
Ta có: \(0\le a\le b\le1\Rightarrow\hept{\begin{cases}a-1\ge0\\b-1\ge0\end{cases}}\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab-a-b+1\ge0\)
\(\Leftrightarrow ab+1\ge a+b\Leftrightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\)(Vì \(c\ge0\))
Mà \(\frac{c}{a+b}\le\frac{c+c}{a+b+c}=\frac{2c}{a+b+c}\)(Vì \(c\ge0\))
\(\Rightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)
Chứng minh tương tự: \(\frac{b}{bc+1}\le\frac{2b}{a+b+c};\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)
\(\Rightarrow\frac{a}{bc+1}+\frac{b}{bc+1}+\frac{c}{ab+1}\le\frac{2\left(a+b+c\right)}{a+b+c}=2\left(đpcm\right)\)
cho 3 số dương 0 <hoặc bằng a<hoặc bằng b<hoặc bằng c<hoặc bằng 1 chứng minh rằng a/bc+1+b/ac+1+c/ab+1<hoặc bằng 2
** Lần sau bạn chú ý, gõ đề bằng công thức toán.
Lời giải:
Vì $0\leq a,b,c\leq 1$ nên $0\leq c\leq ab+1\Rightarrow \frac{c}{ab+1}\leq 1(1)$
Mặt khác:
$0\leq a\leq b\leq c\leq 1$ nên:
$\frac{a}{bc+1}+\frac{b}{ac+1}\leq \frac{a}{ab+1}+\frac{b}{ab+1}=\frac{a+b}{ab+1}=\frac{a+b}{ab+1}-1+1=\frac{(a-1)(1-b)}{ab+1}+1\leq 1(2)$
Lấy $(1)+(2)$ ta có đpcm
Dấu "=" xảy ra khi $(a,b,c)=(0,1,1)$
1. Cho a,b,c,d là các số dương. Chứng minh rằng: \(\sqrt{ab}+\sqrt{cd}\le\sqrt{\left(a+d\right)\left(b+c\right)}\)
2. Cho (x;y;z) và (a;b;c) là các số dương. Chứng minh rằng: \(\sqrt[3]{abc}+\sqrt[3]{xyz}\le\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}\)
3. Cho c>0 và a,b≥c. Chứng minh rằng: \(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
1) Áp dụng BĐT bun-hi-a-cốp-xki ta có:
\(\left(a+d\right)\left(b+c\right)\ge\left(\sqrt{ab}+\sqrt{cd}\right)^2\)
\(\Leftrightarrow\sqrt{\left(a+d\right)\left(b+c\right)}\ge\sqrt{ab}+\sqrt{cd}\)( vì a,b,c,d dương )
Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)
cho a.c=b^2;b.d=c^2 và a,b,c,d khác 0. Chừng minh rằng: a^3.d+b^3.d+c^3.d=a.b^3+c^3.a+a.d^3
1. Cho a,b là hai số dương thõa mãn a+b<ab. Chừng minh: a+b>4
Cho a, b, c là các số nguyên dương thỏa mãn:
a + b + c > 0; ab + bc + ca; abc > 0
Chứng minh rằng cả 3 số đều là các số nguyên dương.
Các cao nhân giúp mình với
Bài 1: Cho n > 3 và n ∈ N. Chứng minh nếu 2n = 10a + b với a; b ∈ N và 0 < b < 9 thì ab ⋮ 6
Bài 2: Cho các số nguyên dương thỏa mãn a2 + b2 = c2. Chứng minh rằng abc ⋮ 60
Bài 3: Chứng minh rằng nếu a + 1 và 2a + 1 đều là các số chính phương thì a ⋮ 24
Bài 4: Chứng minh rằng nếu a + 1 và 3a + 1 đều là các số chính phương thì a ⋮ 40
Bài 5: Cho 3 số nguyên dương thỏa mãn a3 + b3 + c3 ⋮ 14. Chứng minh rằng abc cũng ⋮ 14
Bài 6: Cho biểu thức S = n4 + 2n3 – 16n2 – 2n + 15. Tìm tất cả các giá trị nguyên của n để S ⋮ 16