Tìm a thuộc N để: 3a+8 là SCP
tìm n thuộc N để 3^n+72 là scp
Tìm n thuộc N để 2n+1 , 3n+1 là các SCP còn 2n+9 là số nguyên tố
Câu 1 : Tìm SCP có 4 cs có dạng aabb
Câu 2 : Tìm một số có 2 cs , biết rằng tổng của nó và số viết theo thứ tự ngược lại là SCP
Câu 3 : Chứng minh rằng số n! +2003 không thể là SCP , với n là mọi STN
Câu 4 : Chứng minh rằng số A = 1! + 2! + 3! +4! +... +n! không thể là SCP , với n là mọi STN lớn hơn 3 .
Câu 5 : Tìm a để các số sau là SCP :
a) a2 + a +43
b)a2 + 81
c) a2 + 31a + 1984
Câu 6 : Tìm STN a sao cho a2 + 10a +1964 là một SCP
Câu 7 : Tìm số tự nhiên n sao cho n+1945 và n+2004 là SCP
Câu 8 : Hãy tìm SCP lớn nhất có chữ só cuối khác 0 sao cho khi xóa bỏ 2 cs cuối thì nhận được 1 SCP
PLEASE HELP ME ! Mà ai làm được câu nào thì làm nhé ! Kiểm tra lại đúng mình tick cho !!!! ☻♥♥♥☻
2.TÌM a,biết: số ab mũ 2 trừ số ba mũ 2 là SCP
1, Tìm a thuộc Z để
a, 5 - a/a - 7 thuộc Z
b, 1 - a/3a thuộc Z
2, Tìm n, biết
8^n : (-2)^n = 16
2.
8\(^n\): (-2)\(^n\)= 16
=> ( \(\frac{8}{-2}\)) \(^n\)= 16
=> ( -4 ) \(^n\)= ( -4 ) \(^2\)
=> n = 2
Vậy n = 2
Tìm n thuộc N sao cho n.n+n là SCP
1. a) Tìm n∈N để: \(\left(23-n\right)\left(23+n\right)\) là SCP.
b) Tìm 3 số lẻ liên tiếp mà tổng bình phương của chúng là 1 SCP.
2. a) Tìm nghiệm nguyên: \(x^{11}+y^{11}=11z\)
b) Tìm số tự nhiên n thỏa mãn: \(361\left(n^3+5n+1\right)=85\left(n^4+6n^2+n+5\right)\)
Tìm n thuộc N sao cho 3n+19 là SCP
Xét n chẵn : n = 2k ( k\(\in\)N)
\(\Rightarrow3^n+19=3^{2k}+19=a^2\left(a\inℕ\right)\)
\(\Rightarrow a^2-\left(3k\right)^2=19\)
\(\Rightarrow\left(a-3k\right)\left(a+3k\right)=19\)
Do \(a-3^k< a+3^k\)
\(\Rightarrow\hept{\begin{cases}a-3k=1\\a+3k=19\end{cases}\Rightarrow2\times3^k=18\Rightarrow3^k=19\Rightarrow3^k=3^2\Rightarrow k=2}\)
\(\Rightarrow n=4\)
Xét n lẻ \(n=1\Rightarrow3^n+19=22\) không là số chính phương
có thể giải chi tiết lập luận cho mk được ko
câu 1: tìm SCP có dạng abcba
câu 2: tìm số nguyên a lớn nhất sao cho số T= 427 +41016 +4a là SCP
câu 3:tìm số nguyên dương n để tổng n4 + n3 +n2 +n+1 là SCP