Tính: 2^2010 - (2^2009 + 2^2008+ .....+ 2^1 + 2^0)
tính 2010*2010-2009*2009+2008*2008-........+2*2-1*1
Tính: M= 2^2010-( 2^2009 + 2^2008+....+2^1 +2^0)
Đặt N = 22009 + 22008 + 22007 +......+ 21 + 20
2N = 22010 + 22009 + 22008 +.....+ 22 + 21
2N - N = 22010 - 20
=> N = 22010 - 1
=> M = 22010 - (22010 - 1)
=> M = 22010 - 22010 + 1
=> M = 1
Tính: M=2^2010-(2^2009+2^2008+...+2^1+2^0)
Đặt N=22009+22008+...+1
=>2N=22010+22009+...+2
=>2N-N=(22010+22009+...+2)-(22009+22008+...+1)
=>N=22010-1
Mà M=22010-N=22010-(22010-1)=1
Ác Mộng trả lời đúng rùi. **** thui
tính 2010*2010-2009*2009+2008-.....+2*2-1*1
Tính:\(^{1^2}\)
a) 1^2-2^2+3^2-4^2+5^2-6^2+....+2009^2-2010^2
b) 3^2010-(3^2009+3^2008+3^2007+...+3+3^0)
tính:
\(M=2^{2010}-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)
Đặt \(A=2^{2009}+2^{2008}+...+2^1+2^0\)
Ta có : \(2A=2^{2010}+2^{2009}+...+2^2+2^1\)
\(\Rightarrow2A-A=2^{2010}-2^0\Rightarrow A=2^{2010}-1\)
Do đó : \(M=2^{2010}-A=2^{2010}-\left[2^{2010}-1\right]=1\)
\(M=2^{2010}-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)
\(2^{2010}-M=2^{2009}+2^{2008}+...+2+1\)
\(2\left(2^{2010}-M\right)=2\left(2^{2009}+2^{2008}+...+2+1\right)\)
\(2\left(2^{2010}-M\right)=2^{2010}+2^{2009}+...+2^2+2\)
\(2\left(2^{2010}-M\right)-M=\left(2^{2010}+2^{2009}+...+4+2\right)-\left(2^{2009}+2^{2008}+...+2+1\right)\)
\(2^{2010}-M=2^{2010}+2^{2009}+...+4+2-2^{2009}-2^{2008}-...-2-1\)
\(2^{2010}-M=2^{2010}-1\)
=> M = 1
a) 2010/1+2009/2+2008/3+ ... +1/2010+2010 : 1+1/2+1/3+ ... +1/2010=
b) 1/2011+1/2010+1/2009+ ... +1/3+1/2 : 2010/1+2009/2+2008/3+ ... +1/2010=
2^2010-(2^2009+2^2008+...+2^1+2^0)
M=2^2010-(2^2009+2^2008+...+2^1+2^0)