Cho hệ phương trình \(\hept{\begin{cases}\left(m+1\right)x+3y=3\\2mx-\left(2m+1\right)y=-3\end{cases}}\) Tìm m để hệ phương trình có: \(x,y\in Z\)
Cho hệ phương trình \(\hept{\begin{cases}mx+y=5\left(1\right)\\2mx+3y=6\left(2\right)\end{cases}}\)
Tìm m để hệ phương trình có nghiệm thỏa mãn (2m-1)x+(m+1)y=m (3)
Xét hệ: \(\hept{\begin{cases}mx+y=5\\2mx+3y=6\end{cases}}\) <=> \(\hept{\begin{cases}3mx+3y=15\\2mx+3y=6\end{cases}}\) <=> \(\hept{\begin{cases}mx+y=5\\mx=9\left(\cdot\right)\end{cases}}\)
Hệ pt đã cho có nghiệm duy nhất <=> \(\left(\cdot\right)\)có nghiệm duy nhất m \(\ne\)0
Khi đó hệ đã cho có nghiệm duy nhất \(\hept{\begin{cases}x=\frac{9}{m}\\y=-4\end{cases}}\)
Ta có: (2m - 1)x + (m + 1)y = m
Hay (2m - 1).\(\frac{9}{m}\) + -4(m + 1) = m
<=> \(\frac{18m-9}{m}-4m-4-m=0\)
<=> \(\frac{18m-9-4m^2-4m-m^2}{m}=0\)
=> -5m2 + 14m - 9 = 0
<=> 5m2 - 14m + 9 = 0
<=>5m2 - 5m - 9m + 9 = 0
<=> 5m(m - 1) - 9(m - 1) = 0
<=> (5m - 9)(m - 1) = 0 <=> \(\orbr{\begin{cases}m=\frac{9}{5}\\m=1\end{cases}\left(TM\right)}\)
Vậy với m = 9/5 hoặc m = 1 thì thỏa mãn đề bài
Cho hệ phương trình
\(\hept{\begin{cases}\left(2m+1\right)x-3y=3m-2\\\left(m+3\right)x-\left(m+1\right)y=2m\end{cases}}\)
Tìm m để hệ có nghiệm duy nhất (x;y) sao cho
\(P=x^2+3y^2\)nhỏ nhất
Cho hệ phương trình \(\hept{\begin{cases}2x-y=3\\\\\left(2m-1\right)x+y=-0,5\end{cases}}\)
Tìm m để hệ phương trình có nghiệm (x,y) thoả mãn x+y=1
Theo đề ta có hệ :
\(\hept{\begin{cases}2x-y=3\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=-\frac{1}{3}\end{cases}}\)
=> \(\left(2m-1\right)\frac{4}{3}-\frac{1}{3}=-0,5\)
<=> m = 7/16
Cho hệ phương trình \(\hept{\begin{cases}x-3y=2\\\left(m^2+1\right)x-6y=2m\end{cases}}\) (m là tham số)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x-3y>m+1
câu 1: Giải và biện luận hệ phương trình:\(\hept{\begin{cases}2\left(m-1\right)\cdot x+y=2\\\left(m+2\right)\cdot x+\left(m-1\right)\cdot y=3\end{cases}}\)
câu 2: giải hệ phương trình \(\hept{\begin{cases}x+y=\sqrt{4z-1}\\y+z=\sqrt{4x-1}\\x+z=\sqrt{4y-1}\end{cases}}\)
a)cho hệ phương trình \(\hept{\begin{cases}x-2y=3-m\\2x+y=3\left(m+2\right)\end{cases}}\)
Gọi nghiệm của hệ phương trình là(x;y)Tìm m để \(x^2+y^2\)đạt GTNN
b)Cho hệ phương trình \(\hept{\begin{cases}mx+y=5\\2x-y=2\end{cases}}\)
Tìm m để hệ phương trình có nghiệm thỏa mãn x+y=1
Tìm m nguyên để
a, Hệ phương trình \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)có nghiệm thỏa mãn \(x;y\in Z\)
b, Hệ phương trình \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)có nghiệm thỏa mãn A=xy đạt giá trị lớn nhất.
a/ \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
\(\Rightarrow\left(x+y\right)\left(m+1\right)=3m+1\)
\(\Leftrightarrow\left(x+y\right)=\frac{3m+1}{m+1}=3-\frac{2}{m+1}\)
Vì x, y nguyên nên (m + 1) phải là ước nguyên của 2.
b/ \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\y=mx-m^2+2\left(2\right)\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow\left(m+1\right)x+m\left(mx-m^2+2\right)=2m-1\)
\(\Leftrightarrow\left(m^2+m+1\right)\left(x-m+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=m-1\\y=2-m\end{cases}}\)
\(\Rightarrow A=\left(m-1\right)\left(2-m\right)=-m^2+3m-2\le\frac{1}{4}\)
alibaba nguyễn có thể làm chi tiết hơn được ko
Biết hai hệ phương trình
\(\hept{\begin{cases}x+3y-1=0\\2x+3y-z=1\\\left(m+1\right)x+2z=2m-1\end{cases}}\) và \(\hept{\begin{cases}2x+y-z=1\\x-y-z=0\\x+ny-2nz=3\end{cases}}\)
có nghiệm chung. Tính giá trị m + n
Biết hai hệ phương trình
\(\hept{\begin{cases}x+3y-1=0\\2x+3y-z=1\\\left(m+1\right)x+2z=2m-1\end{cases}}\) và \(\hept{\begin{cases}2x+y-z=1\\x-y-z=0\\x+ny-2nz=3\end{cases}}\)
có nghiệm chung. Tính giá trị m + n