nếu mỗi số m và n đều là tổng của 2 scp thì tích mn cũng là tổng của 2 scp
1) a) Nếu 2n là tổng 2 số chính phương thì n cũng là tổng của hai số chính phương
b) Nếu mỗi n và m đều là tổng hai số chính phương thì tích mn cũng là tổng 2 số chính phương
Chứng minh rằng
a)Nếu số n là tổng của hai số chính phương thì 2n cũng là tổng của hai số chính phương
b)Nếu số 2n là tổng của hai số chính phương thì n cũng là tổng của hai số chính phương
c)Nếu số n là tổng của hai số chính phương thì n2 cũng là tổng của hai số chính phương
d)Nếu mỗi số m và n đều là tổng của hai số chính phương thì tích mn cũng là tổng của hai số chính phương
1.cmr mỗi số sau là scp:
a,A=99...9900....0025
n cs 9 n cs 0
b,B=99...99800..001
n cs 9 n cs 0
c,C=44...4488...89
n cs 4 n-1 cs 8
d,D=11..1122...225
n cs 1 n+1 cs 2
2.Cho N là tổng 2 scp, cmr:
a,2N cũng là tổng 2 scp
b,N2 cũng là tổng 2 scp
vi n la stn co 2 c/s
⇒ 10≤n≤99
⇒ 20≤2n≤198
⇒ 21≤2n+1≤199
ma 2n+1 la scp
2n+1ϵ 25;49;81;121;169
ta co bang
2n+1 25 49 81 169
n 12 24 40 84
3n+1 37 73 121=112 153
kl L C C L
Chứng minh rằng:
a) Nếu số 2n là tổng của hai số chính phương thì n cũng là tổng của hai số chính phương
b) Nếu số n là tổng của hai số chính phương thì n\(^2\) cũng là tổng của hai số chính phương
c) Nếu mỗi số m và n đều là tổng của hai số chính phương thì tích mn cũng là tổng của hai số chính phương
Giả sử \(2n=a^2+b^2\)(a,b∈N).
⇒ \(n=\dfrac{a^2+b^2}{2}=\left(\dfrac{a+b}{2}\right)^2+\left(\dfrac{a-b}{2}\right)^2\)
Vì \(a^2+b^2\) là số chẵn nên a và b cùng tính chẵn, lẻ.
⇒ \(\dfrac{a+b}{2}\) và \(\dfrac{a-b}{2}\) đều là số nguyên
7. Cho A = 4^16.5^25. Tim số chữ số của A
8. Có bao nhiêu số có 2 chữ số ( 2 chữ số đều khác 0 ) sao cho tích của chúng là số chính phương
9. Tìm số chính phương có 4 chữ số biết nếu mỗi chữ số giảm đi 1 đơn vị thì được số mới cũng là số chính phương
10, Tìm số có 2 chữ số biết :
a, tổng của số đó và số viết theo thứ tự ngược lại là số chính phương ;
b, Hiệu bình phương của số đó và số viết theo thứ tự ngược lại là SCP
Câu 1 : Tìm SCP có 4 cs có dạng aabb
Câu 2 : Tìm một số có 2 cs , biết rằng tổng của nó và số viết theo thứ tự ngược lại là SCP
Câu 3 : Chứng minh rằng số n! +2003 không thể là SCP , với n là mọi STN
Câu 4 : Chứng minh rằng số A = 1! + 2! + 3! +4! +... +n! không thể là SCP , với n là mọi STN lớn hơn 3 .
Câu 5 : Tìm a để các số sau là SCP :
a) a2 + a +43
b)a2 + 81
c) a2 + 31a + 1984
Câu 6 : Tìm STN a sao cho a2 + 10a +1964 là một SCP
Câu 7 : Tìm số tự nhiên n sao cho n+1945 và n+2004 là SCP
Câu 8 : Hãy tìm SCP lớn nhất có chữ só cuối khác 0 sao cho khi xóa bỏ 2 cs cuối thì nhận được 1 SCP
PLEASE HELP ME ! Mà ai làm được câu nào thì làm nhé ! Kiểm tra lại đúng mình tick cho !!!! ☻♥♥♥☻
Tìm 1 số chính phương có 4 c/s.Biết rằng c/s tận cùng của nó là số nguyên tố tổng các chữ số của nó là 1 scp và căn bậc 2 của nó cũng có tổng các c/s là 1 số chính phương
tìm scp có 4 chữ số biết rằng nếu thêm vào mỗi chữ số của nó 1 đơn vị thì số đó vẫn là scp
Mình nghĩ đề này của bạn nên thêm điều kiện khi cộng vào mỗi chữ số của nó 1 đơn vị ta vẫn luôn được 1 số có 4 chữ số thì bài toán chắc sẽ dễ dàng giải quyết hơn đấy nhỉ!
Gọi số cần tìm là \(x^2=\overline{abcd}\) \(\left(a,b,c,d< 9\&\inℕ\right)\)
Theo đề bài khi cộng mỗi chữ số của nó thêm 1 đơn vị thì ta vẫn được 1 số chính phương nên đặt:
\(y^2=\overline{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\)
\(\Rightarrow\overline{abcd}+1111=y^2\)
\(\Leftrightarrow x^2+1111=y^2\Leftrightarrow y^2-x^2=1111\)
\(\Leftrightarrow\left(y-x\right)\left(y+x\right)=1111=11\cdot101=1\cdot1111\)
Dễ nhận thấy \(y+x>y-x>0\) nên ta xét các TH sau:
Nếu \(\hept{\begin{cases}y-x=11\\y+x=101\end{cases}}\Rightarrow\hept{\begin{cases}x=45\\y=56\end{cases}\left(tm\right)}\Rightarrow\overline{abcd}=2025\)
Nếu \(\hept{\begin{cases}y-x=1\\y+x=1111\end{cases}}\Rightarrow\hept{\begin{cases}x=555\\y=556\end{cases}}\Rightarrow ktm\)
Vậy số cần tìm là 2025
Gọi số cần tìm là a\(^2\), số mới được tạo thành b\(^2\)( a,b là số tự nhiên ) .
Theo đề bài , ta có :
\(b^2-a^2=1111\)( vì thêm mỗi chữ số 1 đơn vị )
\(\Leftrightarrow\left(b+a\right)\left(b-a\right)=1111=1111.1=101.11\)
Vì b > a nên b + a có thể bằng 1111 hoặc 101 , còn b - a chỉ có thể bằng 1 hoặc 11
Giải ra , ta được \(a=555,b=556\)( loại vì số cần tìm là số có 4 chữ số ) và \(a=45,b=56\)( thỏa mãn )
Vậy số cần tìm là \(45^2=2025\)
* Nguồn : https://cunghoctot.vn/forum/topic/nhien-la-so-chinh-phuong-co-4-chu-so
giúp mình mấy bài trên nhé