Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Khánh Linh
Xem chi tiết
Hoàng Lê Bảo Ngọc
12 tháng 8 2016 lúc 18:46

Ta có : \(\frac{n-1}{n!}=\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\) với n là số tự nhiên khác 0

Khi đó : \(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{2015}{2016!}\)

\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+...+\frac{1}{2015!}-\frac{1}{2016!}\)

\(=1-\frac{1}{2016!}< 1\)

Lại có B > 1

=> A < B

Navy Đỗ
Xem chi tiết
Phùng Minh Quân
23 tháng 4 2018 lúc 19:35

Mấy bài dạng này biết cách làm là oke 

Ta có : 

\(A=\frac{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{\left(2016-1-1-...-1\right)+\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{\frac{2017}{2017}+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=2017\)

Vậy \(A=2017\)

Chúc bạn học tốt ~ 

Huỳnh Phước Mạnh
23 tháng 4 2018 lúc 19:40

\(A=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{2016+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)+\frac{2017}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

(số 2016 tách ra làm 2016 số 1 rồi cộng vào từng phân số, còn dư 1 số viết thành 2017/2017 nghe bạn!!! :)))

\(A=\frac{\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}+\frac{2017}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=2017\)

Võ Hoàng phong
Xem chi tiết
Trần Trúc Linh
Xem chi tiết
trần thị lan chi
Xem chi tiết
Hoàng Phúc
14 tháng 5 2016 lúc 13:41

Đặt \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2015}-\frac{1}{2016}\)

\(A=\left(1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)

\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{1008}\right)\)

\(A=\frac{1}{1009}+\frac{1}{1010}+.....+\frac{1}{2016}\)

Khi đó  \(\frac{\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\right)}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{A}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=1\)
 

Nguyễn Thế Bảo
14 tháng 5 2016 lúc 13:44

Bạn xem lời giải của mình nhé:

Giải:

Bài 2:

Ta xét A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(=1+\left(\frac{1}{2}-1\right)+\frac{1}{3}+\left(\frac{1}{4}-\frac{2}{4}\right)+...+\frac{1}{2015}+\left(\frac{1}{2016}-\frac{2}{2016}\right)\\ =1+\frac{1}{2}-1+\frac{1}{3}+\frac{1}{4}-\frac{1}{2}+...+\frac{1}{2015}+\frac{1}{2016}-\frac{1}{1008}\)

\(=\left(1-1\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{1008}-\frac{1}{1008}\right)+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)

\(=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)

 \(\Rightarrow\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =1\)

Chúc bạn học tốt!hihi

Chàng Trai 2_k_7
Xem chi tiết
Xyz OLM
26 tháng 12 2019 lúc 20:58

\(B=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}=\frac{1+\frac{2015}{2}+1+...+\frac{1}{2016}+1}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)(2016 số hạng 1 ở tử số)

\(=\frac{\frac{2017}{2017}+\frac{2017}{2}+\frac{2017}{3}+....+\frac{2017}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}=\frac{2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}=2017\)

Khách vãng lai đã xóa
Huỳnh Nguyên Phát
Xem chi tiết
vu dinh dat
21 tháng 3 2017 lúc 16:34

bằng 15 hay sao ý

HUY
Xem chi tiết
HUY
27 tháng 7 2016 lúc 19:41

jup tớ với

HUY
27 tháng 7 2016 lúc 19:43

help meee

phạm gia bảo
13 tháng 8 2016 lúc 13:36

đây mà là toán lớp 6 toán lớp 5 thì có kết bạn nhé cũng lớp 6

{1/2+2015/2016} . 4030/8064 * : 2                                                                                                                                                Chỗ có sao là chỗ số số hạng muốn tính thì lấy số đầu cộng số cuối nhân số số hạng rồi chia 2 là xong mà muốn tìm số số hạng thì vẫn tìm tổng hai số nhưng chia cho 2  NHỚ CÔNG THỨC ĐÓ NHA

nhớ kết bạn và bình chọn cho mig nhe

=4030/4032 . 4030/8064: 2

=  48746880/32514048 : 2

= 48746880/65028096

tử số bé hơn mẫu số nên số a này bé hơn 1 b lại lớn hơn 1 nên b lớn hơn

huy
Xem chi tiết
soyeon_Tiểu bàng giải
21 tháng 7 2016 lúc 14:53

A = 1/2! + 2/3! + 3/4! + ... + 2015/2016!

A = 2/2! - 1/2! + 3/3! - 1/3! + 4/4! - 1/4! + ... + 2016/2016! - 1/2016!

A = 1 - 1/2! + 1/2! - 1/3! + 1/3! - 1/4! + ... + 1/2015! - 1/2016!

A = 1 - 1/2016! < 1 < B

=> A < B

Sarah
21 tháng 7 2016 lúc 17:37

(x + 1) + (x + 2) + (x + 3) + ... + (x + 100) = 5750

(x + x + x + ... + x) + (1 + 2 + 3 + ... + 100) = 5750

    100 số x                          100 số

100x + (1 + 100) × 100 : 2 = 5750

100x + 101 × 50 = 5750

100x + 5050 = 5750

100x = 5750 - 5050

100x = 700

x = 700 : 100

x = 7

Vậy x = 7