So Sánh
A = \(\frac{1}{2!}+\frac{2}{3!}+.....+\frac{2015}{2016!}\)
B = 1,02015
So sánh hai biểu thức A và B:
A = \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{2015}{2016!}\)
B = 1,02015
Ta có : \(\frac{n-1}{n!}=\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\) với n là số tự nhiên khác 0
Khi đó : \(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{2015}{2016!}\)
\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+...+\frac{1}{2015!}-\frac{1}{2016!}\)
\(=1-\frac{1}{2016!}< 1\)
Lại có B > 1
=> A < B
SO SÁNH:
A=\(\frac{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+.....+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2016}+\frac{1}{2017}}\)
VÀ
B=2017
Mấy bài dạng này biết cách làm là oke
Ta có :
\(A=\frac{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)
\(A=\frac{\left(2016-1-1-...-1\right)+\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)
\(A=\frac{\frac{2017}{2017}+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)
\(A=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)
\(A=2017\)
Vậy \(A=2017\)
Chúc bạn học tốt ~
\(A=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)
\(A=\frac{2016+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)
\(A=\frac{\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)+\frac{2017}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)
(số 2016 tách ra làm 2016 số 1 rồi cộng vào từng phân số, còn dư 1 số viết thành 2017/2017 nghe bạn!!! :)))
\(A=\frac{\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}+\frac{2017}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)
\(A=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)
\(A=2017\)
cho A=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.......+\frac{1}{2016}+\frac{1}{2017}\)
va B=\(\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+......+\frac{2}{2015}+\frac{1}{2016}\)
Tinh ti so \(\frac{A}{B}\)
A=1/1!+1/2!+1/3!+......+2015/2016! B=1,02015.So sánh A và B
1.So sánh:
\(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2014}\) và \(4\)
2. Tính :
\(\left(1-\frac{1}{2}+\frac{1}{3}+\frac{1}{2015}-\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\)
Đặt \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2015}-\frac{1}{2016}\)
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{1008}\right)\)
\(A=\frac{1}{1009}+\frac{1}{1010}+.....+\frac{1}{2016}\)
Khi đó \(\frac{\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\right)}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{A}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=1\)
Bạn xem lời giải của mình nhé:
Giải:
Bài 2:
Ta xét A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(=1+\left(\frac{1}{2}-1\right)+\frac{1}{3}+\left(\frac{1}{4}-\frac{2}{4}\right)+...+\frac{1}{2015}+\left(\frac{1}{2016}-\frac{2}{2016}\right)\\ =1+\frac{1}{2}-1+\frac{1}{3}+\frac{1}{4}-\frac{1}{2}+...+\frac{1}{2015}+\frac{1}{2016}-\frac{1}{1008}\)
\(=\left(1-1\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{1008}-\frac{1}{1008}\right)+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)
\(=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)
\(\Rightarrow\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =1\)
Chúc bạn học tốt!
\(B=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{1}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)
\(B=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}=\frac{1+\frac{2015}{2}+1+...+\frac{1}{2016}+1}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)(2016 số hạng 1 ở tử số)
\(=\frac{\frac{2017}{2017}+\frac{2017}{2}+\frac{2017}{3}+....+\frac{2017}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}=\frac{2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}=2017\)
Tính nhanh : \(\frac{2017+\frac{1}{2016}+\frac{2}{2015}+\frac{3}{2014}+...+\frac{2015}{2}+\frac{2016}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}}\)
Không tính giá trị cụ thể so sánh 2 biểu thức
A=1/2!+2/3!+3/4!+...+2015/2016!
B=1,02015
đây mà là toán lớp 6 toán lớp 5 thì có kết bạn nhé cũng lớp 6
{1/2+2015/2016} . 4030/8064 * : 2 Chỗ có sao là chỗ số số hạng muốn tính thì lấy số đầu cộng số cuối nhân số số hạng rồi chia 2 là xong mà muốn tìm số số hạng thì vẫn tìm tổng hai số nhưng chia cho 2 NHỚ CÔNG THỨC ĐÓ NHA
nhớ kết bạn và bình chọn cho mig nhe
=4030/4032 . 4030/8064: 2
= 48746880/32514048 : 2
= 48746880/65028096
tử số bé hơn mẫu số nên số a này bé hơn 1 b lại lớn hơn 1 nên b lớn hơn
=
Không tính kết quả so sánh biểu thức A,B
1/2!+2/3!+3/4!+...+2015/2016!
1,02015
A = 1/2! + 2/3! + 3/4! + ... + 2015/2016!
A = 2/2! - 1/2! + 3/3! - 1/3! + 4/4! - 1/4! + ... + 2016/2016! - 1/2016!
A = 1 - 1/2! + 1/2! - 1/3! + 1/3! - 1/4! + ... + 1/2015! - 1/2016!
A = 1 - 1/2016! < 1 < B
=> A < B
(x + 1) + (x + 2) + (x + 3) + ... + (x + 100) = 5750
(x + x + x + ... + x) + (1 + 2 + 3 + ... + 100) = 5750
100 số x 100 số
100x + (1 + 100) × 100 : 2 = 5750
100x + 101 × 50 = 5750
100x + 5050 = 5750
100x = 5750 - 5050
100x = 700
x = 700 : 100
x = 7
Vậy x = 7