Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Satoshi
Xem chi tiết
Phạm Tuấn Đạt
11 tháng 12 2017 lúc 23:29

gọi UCLN(n+3; 2n + 5) = d

=> n+3 chia hết cho d và 2n + 5 chia hết cho d

=> 2n + 6 chia hết cho d và 2n + 5 chia hết cho d

=> (2n + 6) - (2n + 5) = 1 chia hết cho d => d = 1 nên n+3 và 2n +5 là hai số ntố cùng nhau


 

Nguyễn Lê Thành Vinh Thi...
11 tháng 12 2017 lúc 23:33

gọi UCLN(n+3;2n+5) là d

theo bài ra ta có: n+3=2(n+3)=2n+6 chia hết cho d

                            2n+5 chia hết cho d

-> (2n+6)-(2n+5) chia hết cho d

-> 2n+6-2n-5 chia hết cho d

-> 1 chia hết cho d

Vậy UCLN(n+3;2n+5)=1 -> n+3 và 2n+5 là 2 số nguyên tố cùng nhau

CHÚC BẠN HỌC TỐT !     :)

Hương Nguyễn Thị
Xem chi tiết
Đặng công quý
9 tháng 11 2017 lúc 15:05

Gọi a là ước chung của ( 2n+1 ) và ( 3n +1)

Suy ra ( 2n+1 ) chia hết cho a và ( 3n +1) chia hết cho a

3. ( 2n+1 )-2. ( 3n +1) chia hết cho a

Hay 1 chia hết cho a  suy ra a=1. Vậy ƯCLN của 2 số đó =1

Huy Thông Phan
9 tháng 11 2017 lúc 15:06

Ta có :

gọi k là UCLN  của 2n+1 và 3n+1

=> 3(2n+1) \(⋮k\)

=> 2(3n+1)\(⋮k\)

=> 3(2n+1)-2(3n+1)\(⋮k\)

=> 1\(⋮k\)

Vì k >o 

=> k=1

=> đpcm

Online_Math
9 tháng 11 2017 lúc 15:08

Gọi d \(\in\)ƯCLN (2n + 1 ; 3n + 1)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+3⋮d\\6n+2⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau

Nguyễn Quốc Cường
Xem chi tiết
nguyen van hai
7 tháng 1 2016 lúc 21:02

dat n=3k+1 hoac n=3q+2             (k,q tu nhien)

n=3k+1 suy ra n^2=(3k+1)^2=9k^2+6k+1 chia 3 du 1

n=3q+2 suy ra n^2=(3q+2)^2=9q^2+12q+3+1 chia 3 du 1

Lê Thị Hoàng Linh
7 tháng 1 2016 lúc 21:01

Lạ ghê , lớp 5 đã học toán chứng minh rùi à ?

Nguyễn Quốc Cường
7 tháng 1 2016 lúc 21:14

Vì n không chia hết cho 3 nên n có dạng 3k+1 và 3k+2

Với n=3k+1 thi n^2=(3k+1)^2=3k^2.1^2=3k^2+1

Với n=3k+2 thì n^2=(3k+2)^2=3k^2.2^2=3k^2+4=3k^2+3+1

 

 

thiên thiên
Xem chi tiết
võ hoàng nguyên
16 tháng 11 2018 lúc 20:43

Giả sử rằng với n = k (k thuộc N) ta có 2k+1 và 6k+5 ko phải là 2 số nguyên tố cùng nhau, nghĩa là UCLN(2k+1;6k+5) = d (d > 1) 
d là ước của 2k+1 và 6k+5 ---> d là ước của 6k+5 - 3.(2k+1) = 2 ---> d = 2 (vì d > 1) 
Nhưng điều đó là vô lý vì 2 không thể là ước của 2k+1 và 6k+5 được 
Do đó điều giả sử trên là sai ---> 2n+1 và 6n+5 là 2 số nguyên tố cùng nhau với mọi n thuộc N.

Nguyễn Thị Phương Hoa
Xem chi tiết
Thanh Tùng Nguyễn
Xem chi tiết
Đinh Đức Hùng
22 tháng 12 2017 lúc 21:38

Áp dụng bđt AM - GM ta có :

\(\frac{1}{x}+x\ge2\sqrt{\frac{1}{x}.x}=2\)

\(\frac{2}{y}+2y=2\left(\frac{1}{y}+y\right)\ge2.2\sqrt{\frac{1}{y}.y}=4\)

Cộng vế với vế ta được : \(\frac{1}{x}+\frac{2}{y}+x+2y\ge6\)

\(\Leftrightarrow\frac{1}{x}+\frac{2}{y}+3\ge6\Rightarrow\frac{1}{x}+\frac{2}{y}\ge3\) 

Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)

Con Chim 7 Màu
10 tháng 5 2019 lúc 20:39

Ta có:\(\frac{1}{x}+\frac{2}{y}=\frac{1}{x}+\frac{1}{y}+\frac{1}{y}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}\ge\frac{9}{x+2y}=\frac{9}{3}=3\left(đpcm\right)\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}x=y\\x+2y=3\end{cases}\Leftrightarrow x=y=1}\)

:))

Tiểu Thư Ngây Thơ
Xem chi tiết
Uchiha Itachi
12 tháng 10 2016 lúc 19:40

Ta có 1.3.5....55+11 chia hết cho 11

         1.3.5.7.9.11......55 +11 chia hết cho 11

Ta thấy 11 chia hết cho 11 và 1.3.5.7.9.11......55 chia hết cho 11 

Vậy A chia hết cho 11

Mỹ Anh
12 tháng 10 2016 lúc 19:43

A = 1 . 3 . 5 ... 55 + 11 chia hết cho 11

Ta thấy :

1 . 3 . 5 ...  55 = 1 . 3 . 5 .... 5 . 11 chia hết cho 11 ( 1 )

11 chia hết cho 11 ( 2 )

Từ ( 1 ) và ( 2 ) => 1 . 3 . 5 . ... . 55 + 11 chia hết cho 11

=> A chia hết cho 11 

Đặng Thị Thúy Hằng
Xem chi tiết
Nguyễn Anh Quân
15 tháng 12 2017 lúc 20:18

Gọi ƯCLN của 2n+3 và 3n+4 là d ( d thuộc N sao )

=> 2n+3 và 3n+4 đều chia hết cho d

=> 3.(2n+3) và 2.(3n+4) đều chia hết cho d

=> 6n+9 và 6n+8 đều chia hết cho d

=> 6n+9-(6n+8) chia hết cho d        hay 1 chia hết cho d 

=> d = 1 ( vì d thuộc N sao )

=> ƯCLN của 2n+3 và 3n+4 là 1

=> 2n+3 và 3n+4 là 2 số nguyên tố cùng nhau

k mk nha

Đặng Thị Thúy Hằng
15 tháng 12 2017 lúc 20:22

thank bn, nhớ ủng hộ mk những câu hỏi sau nha.....>_<

Nguyễn Hà Vy
15 tháng 12 2017 lúc 20:22

ƯCLN(2n+3,3n+4)

=>UCLN(2n+3,n+1)

=>UCLN(n+1,n+2)

=1

 Vì 2n+3 ko chia hết cho 2 vì 3 ko chia hết cho 2

=>2n+3 và 3n+4 là 2 số nguyên tố cùng nhau.

Nguyễn Thị Phương Hoa
Xem chi tiết
Châu Nguyễn Khánh Vinh
4 tháng 1 2016 lúc 11:33

lll.>,<////////<<kLk:,,,,,,>L:cnm