Tính giá trị của biểu thức :
A = -5x/21 + -5y/21 + -5z/21 biết x+y= -z
.Tính giá trị của biểu thức
A=-5x/21+-5y/21+-5z/21
Biết x+y=-z
Tính giá trị biểu thức:
A=-5x/21 + -5y/21 + -5z/21 biết x+y=-z
A = \(\frac{-5x}{21}\)+ \(\frac{-5y}{21}\)+ \(\frac{-5x}{21}\)
= \(\frac{\left(-5x\right)+\left(-5y\right)+\left(-5x\right)}{21}\)
vì x + y là số dõi của z
=> x + y + z = 0
=> \(\frac{5.\left(x+y+z\right)}{21}\)
= \(\frac{-5}{21}\). 0 = 0
=> A = 0
hok tốt !
Thay -z=x+y vào biểu thức A ta có A=-5x/21+(-5y/21)+[5(x+y)/21] =>-5x/21 +(-5y/21)+(5x+5y)/21=>-5x/21+(-5y/21)+5x/21+5y/21 => A = 0
A=-5x/21+-5y/21+-5z/21 biết x+y=z
Tính giá trị biểu thức trên
TÍNH GIÁ TRỊ CỦA BIỂU THỨC:
A= \(\frac{-5x}{21}\)+ \(\frac{-5y}{21}\)+\(\frac{-5z}{21}\)biết x + y = -z
`Answer:`
\(A=\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}\)
\(=\frac{-5x-5y-5z}{21}\)
\(=\frac{-5\left(x+y\right)-5z}{21}\)
\(=\frac{-5\left(-z\right)-5z}{21}\)
\(=\frac{5z-5z}{21}\)
\(=\frac{0}{21}\)
\(=0\)
Tính giá trị biểu thức
A= -5x/21 + 5y/21 + -5z/21 biết x + y = -z
\(A=\dfrac{-5x}{21}+\dfrac{-5y}{21}+\dfrac{-5z}{21}\)
\(=\dfrac{-5x-5y-5z}{21}\\ =\dfrac{-5\left(x+y\right)-5z}{21}\\ =\dfrac{-5\cdot\left(-z\right)-5z}{21}\\ =\dfrac{5z-5z}{21}\\ =\dfrac{0}{21}\\ =0\)
A= -5x/21 + -5y/21 + -5z/21
Biết x + y = -z
Tinh giá trị bthuc
\(A=\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}\)
\(=\frac{-5x-5y-5z}{21}\)
\(=\frac{-5\left(x+y+z\right)}{21}\)
Do \(x+y=-z\) => \(x+y+z=0\)
Như vậy \(A=0\)
Bài 1: tìm x, biết
\(\frac{1}{2a^2+1}:x=2\)
Bài 2: tính giá trị biểu thức:
\(A=\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}\)biết x+y=-z
bài 1:rất dễ,nhân chéo sẽ giải đc
bài 2: x+y=-x
=>x+y+z=0
Ta có: \(A=\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}=\frac{\left(-5x\right)+\left(-5y\right)+\left(-5z\right)}{21}=\frac{-5.\left(x+y+z\right)}{21}=\frac{0}{21}=0\)
bài 1:
\(\frac{1}{2a^2+1}:x=2\)
\(\Leftrightarrow\frac{1}{2a^2+1}.\frac{1}{x}=2\)
\(\Leftrightarrow\frac{1}{\left(2a^2+1\right).x}=2\)
\(\Leftrightarrow x=\frac{1}{\frac{\left(2a^2+1\right)}{2}}=\frac{1}{2a^2+1}.\frac{1}{2}=\frac{1}{\left(2a^2+1\right).2}=\frac{1}{4a^2+2}\)
Tính giá trị biểu thức:
A=\(\dfrac{-5x}{21}\)+\(\dfrac{-5y}{21}\)+\(\dfrac{-5z}{21}\)biết x+y=-z
\(A=\dfrac{-5x}{21}+\dfrac{-5y}{21}+\dfrac{-5z}{21}\)
\(A=\dfrac{-5x+\left(-5y\right)}{21}+\dfrac{-5z}{21}\)
\(A=\dfrac{-5\cdot\left(x+y\right)}{21}+\dfrac{-5z}{21}\)
\(A=\dfrac{-5\cdot\left(-z\right)}{21}+\dfrac{-5z}{21}\)
\(A=\dfrac{5z}{21}+\dfrac{-5z}{21}\)
\(A=\dfrac{5z+\left(-5z\right)}{21}=\dfrac{0}{21}=0\)
Vậy \(A=0\)
Tính -5x/21+-5y/21+-5z/21 biết x+y=-z
x + y = -z => x+y +z = -z + z =0
\(\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}=\frac{\left(-5x\right)+\left(-5y\right)+\left(-5z\right)}{21}=\frac{-5.\left(x+y+z\right)}{21}.\frac{-5.0}{21}=\frac{0}{21}=0\)
-5x/21+-5y/21+-5z/21=-5/21
(x+y+z)=-5/21.(-z+z)=0