Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yim Yim
Xem chi tiết
Nguyen Ngoc Vy Phuong
15 tháng 3 2017 lúc 15:30

bạn lên mạng đánh đề bài kiểu gì cũng có nhé -:)) tớ tìm rồi đấy >_<

luongvanngoc
Xem chi tiết
Nguyen Duy Dai
Xem chi tiết
Nguyễn Thị Minh Nguyệt
Xem chi tiết
vũ tiền châu
12 tháng 9 2017 lúc 22:03

ta có xy+yz+zx=0=> \(\frac{xy+yz+zx}{xyz}=0\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

đặt \(\frac{1}{x}=a,\frac{1}{y}=b,\frac{1}{z}=c\Rightarrow a+b+c=0\)

ta xét \(a^3+b^3+c^3-3abc=a^3+b^3+3ab\left(a+b\right)+c^3-3ab-3abc\)

           \(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

=> \(a^3+b^3+c^3=3abc\) \(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

=> \(M=\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.\frac{3}{xyz}=3\)

=> M=3

Nguyễn Tiến Dũng
Xem chi tiết
Trần Việt Linh
12 tháng 12 2016 lúc 21:50

\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)

\(=\frac{xz+z+1}{xz+z+1}=1\)

=>đpcm

soyeon_Tiểubàng giải
12 tháng 12 2016 lúc 21:50

2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1

= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1

= xz/1+xz+z + 1/z+1+xz + z/xz+z+1

= xz+1+x/1+xz+x = 1 (đpcm)

Lightning Farron
12 tháng 12 2016 lúc 21:52

Thay xyz=2013 vào ta có:

\(\frac{xyz\cdot x}{xy+xyz\cdot x+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{y\left(z+1+xz\right)}+\frac{z}{xz+z+1}\)

\(=\frac{xy\cdot xz}{xy\left(xz+z+1\right)}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)

\(=\frac{xz+1+z}{xz+z+1}=1\) (Đpcm)

fghj
Xem chi tiết
Trần Tuấn Trọng
Xem chi tiết
OoO_Nhok_Lạnh_Lùng_OoO
2 tháng 9 2017 lúc 14:05

làm tương tự bài này nha

x + y + z = 3. Tìm Max P = xy + yz + xz

Ta có: (x - y)² ≥ 0 <=> x² - 2xy + y² ≥ 0 <=> x² + y² ≥ 2xy

hay 2xy ≤ x² + y² , dấu " = " xảy ra <=> x = y 

tương tự: 

+) 2yz ≤ y² + z² +) 2xz ≤ x² + z² 

cộng 3 vế của 3 bđt trên

--> 2xy + 2yz + 2xz ≤ 2(x² + y² + z²) 

--> xy + yz + xz ≤ x² + y² + z² 

--> xy + yz + xz + 2xy + 2yz + 2xz ≤ x² + y² + z² + 2xy + 2yz + 2xz 

--> 3(xy + yz + xz) ≤ (x + y + z)² 

--> 3(xy + yz + xz) ≤ 3² 

--> xy + yz + xz ≤ 3 

Thúy Ngân
2 tháng 9 2017 lúc 14:27

Theo đề ta có :

xy + yz + xz = 0 

\(\Rightarrow xy=0-yz-xz=-\left(yz+xz\right)\) (1)

\(\Rightarrow yz=0-xz-xy=-\left(xz+xy\right)\)(2)

\(\Rightarrow xz=0-xy-yz=-\left(xy+yz\right)\)(3)

\(M=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)

Từ (1) ; (2) và (3) , ta có :

\(M=\frac{-\left(xy+xz\right)}{x^2}+\frac{-\left(xy+yz\right)}{y^2}+\frac{-\left(yz+xz\right)}{z^2}\)

\(M=\frac{-x\left(y+z\right)}{x^2}+\frac{-y\left(x+z\right)}{y^2}+\frac{-z\left(x+y\right)}{z^2}\)

\(M=\frac{-\left(y+z\right)}{x}+\frac{-\left(x+z\right)}{y}+\frac{-\left(x+y\right)}{z}\)

\(M-3=\left(\frac{-\left(y+z\right)}{x}-1\right)+\left(\frac{-\left(x+z\right)}{y}-1\right)+\left(\frac{-\left(x+y\right)}{z}-1\right)\)

\(M-3=\left(\frac{-y-z}{x}-\frac{x}{x}\right)+\left(\frac{-x-z}{y}-\frac{y}{y}\right)+\left(\frac{-x-y}{z}-\frac{z}{z}\right)\)

\(M-3=\left(\frac{-y-z-x}{x}\right)+\left(\frac{-x-z-y}{y}\right)+\left(\frac{-x-y-z}{z}\right)\)

\(M-3=\frac{-\left(y+z+x\right)}{x}+\frac{-\left(x+z+y\right)}{y}+\frac{-\left(x+y+z\right)}{z}\)

..............

Tuyển Trần Thị
2 tháng 9 2017 lúc 18:28

\(\frac{xy+xz+yz}{xyz}=0\Rightarrow\frac{1}{z}+\frac{1}{y}+\frac{1}{x}=0\)

voi a+b+c=0 thi \(a^3+b^3+c^3=3abc\)

that vay  \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\) 

                                                            =\(\left(a+b+c\right)\left(\left(a+b\right)^2-\left(a+b\right)c+c^2\right)-3ab\left(a+b+c\right)\)

                                                           =0

ap dung ta cung co \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=3\left(\frac{1}{x}.\frac{1}{y}.\frac{1}{z}\right)=\frac{3}{xyz}\)

M=\(\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=0\)

Thượng Hoàng Yến
Xem chi tiết
Bùi Thế Hào
12 tháng 4 2018 lúc 14:02

\(A=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{zx+z+1}\)

\(A=\frac{xz}{xyz+xz+z}+\frac{yxz}{yz.xz+xyz+xz}+\frac{z}{zx+z+1}\) Thay xyz=1 vào ta được:

\(A=\frac{xz}{xz+z+1}+\frac{1}{z+1+xz}+\frac{z}{zx+z+1}\)

\(A=\frac{zx+z+1}{zx+z+1}=1\)

=> A=1

danh anh
Xem chi tiết