Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
an
Xem chi tiết
Nguyễn Văn Hoàng
14 tháng 3 2016 lúc 20:08

3 đoạn thẳng OA,OB,OC thỏa mãn bất đẳng thức ta chứng minh 
OA + OB > OC và OA - OB<OC ..... 
Trong tam giác AOB có OA + OB > AB => OA + OB > AC (1). 
Do O nằm trong tam giác ABC => góc OAC < góc BAC => góc OAC < 60 độ 
và góc OCA < góc BCA => góc OCA < 60 độ => góc AOC > 60 độ 
trong tam giác AOC góc AOC lớn nhất => AC lớn nhất =>OC < AC (2) 
từ (1) và (2) => OA + OB > OC tương tự ta có OB + OC > OA 
=> OC > OA - OB hay OA-OB<OC.... 

Đức Thắng Lê
14 tháng 3 2016 lúc 20:03

minh moi hoc lop 5

nhomnhom
14 tháng 3 2016 lúc 20:06

minh moi hoc lop 8

Thao Minh
Xem chi tiết
Uchiha Itachi
1 tháng 11 2016 lúc 18:38

sử dụng phương pháp phát triển nâng cao dùng cho bồi dưỡng học sinh giỏi là gắn hệ tọa độ Oxy vào hình vẽ để làm

Đặng Phương Thảo
Xem chi tiết
Trần Thị Loan
27 tháng 6 2015 lúc 20:20

A B C O

Gọi cạnh của tam giác đều là a . 

Kẻ đường cao AH . bằng cách áp dụng ĐL Pi ta go dễ có AH = \(\frac{a\sqrt{3}}{2}\)

Gọi m; n ; p lần lượt là k/c từ O đến BC; AB ; AC

Ta có SABC = SOBC    +    SOAB   +     SOAC

                  = \(\frac{1}{2}\).m.a + \(\frac{1}{2}\).n.a + \(\frac{1}{2}\).p. a = \(\frac{1}{2}\).a.(m+n+p)

Mặt khác, SABC = \(\frac{1}{2}\)AH.BC = \(\frac{1}{2}\)\(\frac{a\sqrt{3}}{2}\).a 

=>  \(\frac{1}{2}\).a.(m+n+p) =  \(\frac{1}{2}\)\(\frac{a\sqrt{3}}{2}\).a  => m + n + p = \(\frac{a\sqrt{3}}{2}\)= không đổi

=> ĐPCM

Đặng Phương Thảo
Xem chi tiết
Đặng Phương Thảo
Xem chi tiết
Thao Minh
Xem chi tiết
tran xuan quynh
Xem chi tiết
Nguyễn Phương Ngân
Xem chi tiết
loan cao thị
Xem chi tiết