Giúp mình với các bạn: Rút gọn biểu thức:
\(\frac{y}{x}.\sqrt{\frac{x^2}{y^2}}\)
với x>0 và y khác 0
các bạn ơi giúp mình với: rút gọn biểu thức:
\(5xy.\sqrt{\frac{25x^2}{y^6}}\)
với x<0; y khác 0
\(5xy.\sqrt{\frac{25x^2}{y^6}}=5xy.\sqrt{\frac{5^2x^2}{\left(y^3\right)^2}}=5xy.\sqrt{\frac{\left(5x\right)^2}{\left(y^3\right)^2}}5xy.\sqrt{\left(\frac{5x}{y^3}\right)^2}=5xy.\frac{5x}{y^3}=\frac{5^2x^2}{y^2}=\frac{\left(5x\right)^2}{y^2}=\left(\frac{5x}{y}\right)^2\)
Chúc bạn học tốt
5xy.\(\sqrt{\frac{25x^2}{y^6}}\)
=5xy.\(\frac{\left|5x\right|}{\left|y^3\right|}\){x<0 nên |5x|=-5x
=\(\orbr{\begin{cases}5xy.\frac{-5x}{y^3}\\5xy.\frac{-5x}{-y^3}\end{cases}}\)
=\(\orbr{\begin{cases}\frac{-25x^2}{y^3}\\\frac{25x^2}{y^3}\end{cases}}\)
Rút gọn
1) \(5xy.\sqrt{\frac{x^2}{y^6}}\)với x<0
2) \(0.2x^3y^3.\sqrt{\frac{16}{x^4y^8}}\)Với x và y khác 0
- Bạn nào giải giúp mình với! Thanks nạ!
\(5xy\sqrt{\frac{x^2}{y^6}}=5\sqrt{\frac{x^4y^2}{y^6}}=5\sqrt{\frac{x^4}{y^4}}=5\left|\frac{x^2}{y^2}\right|=-5\)
\(5xy\sqrt{\frac{x^2}{y^6}}=5\sqrt{\frac{x^4y^2}{y^6}}=5\sqrt{\frac{x^4}{y^4}}=5\)
\(0.2x^3y^3\sqrt{\frac{16}{x^4y^8}}=0.2.4\sqrt{\frac{x^6y^6}{x^4y^8}}=0.8\frac{x}{y}\)
Rút gọn biểu thức (làm chi tiết giúp mình với)\(C=\sqrt{\frac{x-2\sqrt{xy}+y}{x+6\sqrt{xy}+y}}\) (Với x>0)
\(C=\sqrt{\frac{x-2\sqrt{xy}+y}{x+6\sqrt{xy}+y}}\)
\(C=\sqrt{\frac{\left(\sqrt{x}\right)^2-2.\sqrt{x}.\sqrt{y}+\left(\sqrt{y}\right)^2}{\left(\sqrt{x}\right)^2+2\sqrt{x}\sqrt{y}+\left(\sqrt{y}\right)^2+4\sqrt{xy}}}\)
\(C=\sqrt{\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}+\sqrt{y}\right)^2+4xy}}\)
Kết quả rút gọn biểu thức A=\(\frac{y}{x}\sqrt{\frac{x^2}{y^4}}\)với x>0,y>0
\(A=\frac{y}{x}\cdot\sqrt{\frac{x^2}{y^4}}=\frac{y}{x}\cdot\frac{\sqrt{x^2}}{\sqrt{y^4}}=\frac{y}{x}\cdot\frac{\left|x\right|}{\left|y^2\right|}=\frac{y}{x}\cdot\frac{x}{y^2}=\frac{1}{y}\)( x > 0 ; y > 0 )
Bài 1: Rút gọn biểu thức:
\(A=\left(\frac{2\sqrt{xy}}{x-y}+\frac{\sqrt{x}-\sqrt{y}}{2\sqrt{x}+2\sqrt{y}}\right).\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{y}-\sqrt{x}}\) Với x>0, y>0, x#y
Ta có \(A=\left(\frac{2\sqrt{xy}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}+\frac{\sqrt{x}-\sqrt{y}}{2\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{y}-\sqrt{x}}\)
\(=\left(\frac{4\sqrt{xy}+\left(\sqrt{x}-\sqrt{y}\right)^2}{2\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\) (Quy đồng biểu thức đầu và đổi dấu số hạng cuối)
\(=\left(\frac{4\sqrt{xy}+x-2\sqrt{xy}+y}{2\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{2\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(=\frac{\sqrt{x}+\sqrt{y}}{2\left(\sqrt{x}-\sqrt{y}\right)}\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x}}{\sqrt{x}-\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}-\sqrt{y}}=1.\)
Vậy giá trị biểu thức \(A=1.\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{2\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
Rút gọn biểu thức
a)\(\frac{\sqrt{2x^3}}{\sqrt{8x}}\)(x>0)
b)(3−√5)(3+√5)
c)\(\sqrt{\frac{3x^2y^4}{27}}\)(x<0,x=0)
e)\(\frac{y}{x^2}\sqrt{\frac{36x^4}{y^2}}\)(y<0)
f)\(\frac{\sqrt{99999999}}{\sqrt{11111111}}\)
MK CẦN GẤP CÁC BẠN GIÚP MÌNH NHÉ!!! PLEASE
a) \(\frac{\sqrt{2x^3}}{\sqrt{8x}}=\sqrt{\frac{2x^3}{8x}}=\frac{1}{2}x\)
b) \(\left(3-\sqrt{5}\right)\left(x+\sqrt{5}\right)=3^2-\left(\sqrt{5}\right)^2=9-5=4\)
c) \(\sqrt{\frac{3x^2y^4}{27}}=0\)
\(y\ne0\)
Thì \(\sqrt{\frac{3x^2y^4}{27}}=\frac{1}{3}xy^2\)
e) \(\frac{y}{x^2}\sqrt{\frac{36x^4}{y^2}}=\frac{y}{x^2}.\frac{6x^2}{\left|y\right|}=\frac{6y}{\left|y\right|}\)
Vì y < 0 nên \(\left|y\right|=-y\)
Vậy \(\frac{6y}{\left|y\right|}=\frac{6y}{-y}=-6\)
f) \(\frac{\sqrt{99999999}}{\sqrt{11111111}}=\sqrt{\frac{99999999}{11111111}}=\sqrt{9}=3\)
Rút gọn các biểu thức:
a)\(\frac{1}{\sqrt{x}-1}+\frac{1}{1+\sqrt{x}}+1\)với x>0 và \(x\ne1\)
b)\(\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{4-x}\)với x>0 và \(x\ne4\)
c)\(5\sqrt{\frac{x}{y}}-4\sqrt{\frac{y}{x}}+\sqrt{\frac{1}{xy}}\)với x>0, y>0
a) \(\frac{1}{\sqrt{x}-1}+\frac{1}{1+\sqrt{x}}=\frac{1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(1+\sqrt{x}\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(1+\sqrt{x}\right)}=\frac{2\sqrt{x}}{x-1}\)( x > 0 ; x ≠ 1 )
b) \(\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{4-x}=\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}+\frac{\sqrt{x}}{x-4}\)
\(=\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-2-2\sqrt{x}-4+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{-6}{x-4}\)( x > 0 ; x ≠ 4 )
a) Với \(x>0\)và \(x\ne1\)ta có:
\(\frac{1}{\sqrt{x}-1}+\frac{1}{1+\sqrt{x}}+1\)
\(=\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}+1+\sqrt{x}-1+x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b) Với \(x>0\)và \(x\ne4\)ta có:
\(\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{4-x}=\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{x-4}\)
\(=\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)-2\left(\sqrt{x}+2\right)+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-2-2\sqrt{x}-4+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{-6}{x-4}\)
Rút gọn biểu thức:
\(\frac{x^3}{y^2}\): \(\sqrt{\frac{x^2}{y^4}}\)(x và y khác 0)
=\(\frac{x^3}{y^2}\cdot\frac{\sqrt{y^4^{ }}}{\sqrt{x^2}}=\frac{x^3}{y^2}\cdot\frac{y^2}{x}=x^2\)
\(=\frac{x^3}{y^2}:\left|\frac{x}{y^2}\right|=\frac{x^3}{y^2}:\frac{\left|x\right|}{y^2}=\frac{x^3}{\left|x\right|}=\hept{\begin{cases}\frac{x^3}{x}=x^2\text{nếu }x>0\\\frac{x^3}{-x}=-x^2\text{ nếu }x< 0\end{cases}}\)
Câu 1 : Cho biểu thức P= \(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{x-1}\)
với x>=0; x khác 1
a. Rút gọn biểu thức P
b. Tìm x để P có giá trị nguyên
Câu 2: Rút gọn biểu thức
\(A=\frac{5}{\sqrt{7}+\sqrt{2}}+\frac{1}{\sqrt{2}-1}-\frac{7}{\sqrt{7}}\)
Mong các bạn trả lời giúp mình nhé !!!
\(P=\frac{x+2}{\sqrt{x}^3-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(P=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)
\(P=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
2,
\(A=\frac{5\left(\sqrt{7}-\sqrt{2}\right)}{\left(\sqrt{7}-\sqrt{2}\right)\left(\sqrt{7}+\sqrt{2}\right)}+\frac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}-\frac{7\sqrt{7}}{7}\)
\(A=\frac{5\left(\sqrt{7}-\sqrt{2}\right)}{7-2}+\frac{\left(\sqrt{2}+1\right)}{2-1}-\sqrt{7}\)
\(A=\sqrt{7}-\sqrt{2}+\sqrt{2}+1-\sqrt{7}=1\)
\(P=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)