Tim x thuoc N biet
( x - 2 ) ^2016 + ( x -3 ) = 1
Ta có : \(\left(x-2\right)^{2016}\)dương
\(\Rightarrow x-3=0\Rightarrow x=3\)
Thay x ta thử :
\(\left(3-2\right)^{2016}+\left(3-3\right)=1+0=1\)thỏa đề
Vậy \(x=3\)
Tim x thuoc N biet
( x - 2 ) ^2016 + ( x -3 ) = 1
Tim x thuoc N biet
( x - 2 ) ^2016 + ( x -3 ) = 3
Đặt \(A=\left(x-2\right)^{2016}+\left(x-3\right)\)
\(x-2< 2\) vì nếu \(x-2\ge2\)
\(\Rightarrow x-3\ge1\)
\(\left(x-2\right)^{2016}>3\)
\(\Rightarrow A=\left(x-2\right)^{2016}+\left(x-3\right)>3\) ( vô lý )
\(\Rightarrow x-2< 2\)
\(\Rightarrow x< 4\)
Với \(x=0\)
\(\Rightarrow A=\left(x-2\right)^{2016}+\left(x-3\right)=2^{2016}-3>3\)
Với \(x=1\)
\(\Rightarrow A=\left(x-2\right)^{2016}+\left(x-3\right)< 0< 3\)
Với \(x=2\)
\(\Rightarrow A=\left(x-2\right)^{2016}+\left(x-3\right)=0-1< 3\)
Với \(x=3\)
\(\Rightarrow A=\left(x-2\right)^{2016}+\left(x-3\right)=1+0< 3\)
Do đó không có \(x\in N\) thỏa mãn.
Tim x thuoc N biet
( x - 2 )^2016 + \(\left|x-3\right|\) =1
tim x thuoc n biet x^2016=x^5
\(x^{2016}=x^5\)
=>\(x^{2016}-x^5=0\)
=>\(x^5\left(x^{2011}-1\right)=0\)
=>x5=0 hoặc x2011-1=0
=>x=0 hoặc x=1
x=0 hoặc x=1
Vì: 12016=1
15=1
02016=0
05=0
tim x,y thuoc N biet 59x+26y=2016 (x,y nguyen to)
tim x,y thuoc N biet 59x+26y=2016 (x,y nguyen to)
tim x,y thuoc N* biet 1+x+x^2+x^3=2^y
tim x thuoc N biet
x+(x+1)+(x+2)+(x+3)+.......+(x+30)=1240
1+2+3+.....+x=210
x+(x+1)+(x+2)+(x+3)+.......+(x+30)=1240
\(\Leftrightarrow\left(x+x+x.+...x\right)+\left(1+2+3...+30\right)=1240\)
\(\Rightarrow30x+465=1240\)
\(\Rightarrow30x=1240-465=775\)
\(\Rightarrow30x=775\)
\(V\text{ậy}x=\frac{155}{6}\)
1+2+3+.....+x=210
\(\left(1+x\right).x=210\)
\(\Rightarrow x=14\)
x+(x+1)+(x+2)+...+(x+30)=1240
=>x+x+1+x+2+...+x+30=1240
=>(x+x+x+...+x)+(1+2+...+30)=1240
=>31x+[(30-1):1+1] . (30+1) :2=1240
=>31x+30.31:2=1240
=>31x+15.31=1240
=>31(x+15)=1240
=>x+15=1240:31=40
=>x=40-15=25
1+2+3+...+x=210
=>[(x-1):1+1]. (x+1) : 2= 210
=>x.(x+1):2=210
=>x(x+1)=210.2=420
=>x(x+1)=20.21
=>x=20