Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hai Nguyen
Xem chi tiết
Thắng Nguyễn
21 tháng 6 2016 lúc 21:56

2S=2(1+2+22+...+29)

2S=2+22+...+210

2S-S=(2+22+...+210)-(1+2+22+...+29)

S=210-1=1024-1=1023

5*28=5*256=1280.Vì 1280>1023

=>5*28>210-1 <=> 5*28>S

Sachiko
Xem chi tiết
Minh Nguyễn Cao
28 tháng 6 2018 lúc 8:21

\(S=1+2+2^2+2^3+...+2^9\)

\(2S=2+2^2+2^3+2^4+...+2^{10}\)

\(2S-S=2-2+2^2-2^2+2^3-2^3+2^4-2^4+...+2^9-2^9+2^{10}-1\)

\(S=2^{10}-1=2^8.2^2-1=2^8.4-1< 2^8.5\)

=> S < \(2^8.5\)

phạm thị kim yến
28 tháng 6 2018 lúc 8:42

S= 1+\(2^2\)+\(2^3\)+...+\(2^9\)

\(\Rightarrow\)2S=2+\(2^2\)+\(2^3\)+...+\(2^{10}\)

\(\Rightarrow\)2S-S= (2+\(2^2\)+\(2^3\)+...+\(2^{10}\))-(1+2+\(2^2\)+\(2^3\)+...\(2^9\))

\(\Rightarrow\)S= 2+\(2^2\)+\(2^3\)+...+\(2^{10}\)-1-2-\(2^2\)-\(2^3\)-...-\(2^9\)

S=\(2^{10}\)-1

ta có: (4+1) .\(2^8\)=4.\(2^8\)+\(2^8\)=\(2^2\).\(2^8\)+\(2^8\)=\(2^{10}\)+\(2^8\)

\(\Rightarrow\)\(2^{10}\)-1<\(2^{10}\)+\(2^8\)

hay S<5.\(2^8\)

Vũ Thu Hà
Xem chi tiết

Chắc đề thế này! 

\(S=1+2+2^2+2^3+2^4+...+2^{2014}\)

\(2S=2+2^2+2^3+2^4+...+2^{2015}\)

\(2S-S=\left(2+2^2+2^3+...+2^{2015}\right)-\left(1+2+2^2+...+2^{2014}\right)\)

\(\Rightarrow2S-S=S=2^{2015}-1< 2^{2015}\Rightarrow S< D\)

Khách vãng lai đã xóa
yen mai
Xem chi tiết
Nguyễn Hữu Vĩnh Thịnh
23 tháng 9 2019 lúc 21:06

a)S = 1 + 2 + 22 + 2+ 24 +25 +26 +27 + 2+ 29
2S = 2.(1 + 2 + 22 + 2+ 24 +25 +26 +27 + 2+ 29)

2S = 2 + 22 + 2+ 24 +25 +26 +27 + 2+ 29 + 210

S = (2 + 22 + 2+ 24 +25 +26 +27 + 2+ 29 + 210) - (1 + 2 + 22 + 2+ 24 +25 +26 +27 + 2+ 29)

S = 210 - 1

Suy ra:   S = \(\frac{2^{9+1}-1}{2-1}\)

S = \(\frac{2^{10}-1}{1}\)

S = 210 - 1

S = 1023

b)Mình không thể giúp bạn vì mình không rõ 5.28 hay (5.2)8

Minami Yukari
Xem chi tiết
Đỗ Lê Tú Linh
29 tháng 11 2015 lúc 21:57

a)n+5 chia hết cho n-1

=>n-1+6 chia hết cho n-1 

=> 6 chia hết cho n-1 hay n-1EƯ(6)={1;2;3;6}

=>nE{2;3;4;7}

b)3n+1 chia hết cho n+1

3n+3-2 chia hết cho n+1

3(n+1)-2 chia hết cho n+1

=>2 chia hết cho n+1 hay n+1EƯ(2)={1;2}

nE{0;1}

Nguyen Thi My Duyen
Xem chi tiết
toulin
Xem chi tiết
Nguyễn Đăng Nhân
30 tháng 9 2023 lúc 19:49

\(S=1+3^2+3^4+...+3^{2022}\)

\(3^2S=9S=3^2+3^4+3^6+...+3^{2024}\)

\(S=\dfrac{9S-S}{8}=\left(3^{2024}-1\right):8\)

d, không đáp án nào đúng

Akai Haruma
30 tháng 9 2023 lúc 20:02

Lời giải:

$S=1+3^2+3^4+....+3^{2022}$

$9S=3^2S=3^2+3^4+3^6+...+3^{2024}$

$\Rightarrow 9S-S=3^{2024}-1$

$\Rightarrow S=\frac{3^{2024}-1}{8}$

Đáp án D.

Lê Nguyễn Khánh Huyền
Xem chi tiết
Lê Hà Phương
31 tháng 7 2016 lúc 14:07

Bài 1: a)  \(M=1+5+5^2+...+5^{100}\)

\(5M=5+5^2+5^3+...+5^{101}\)

\(5M-M=\left(5+5^2+5^3+...+5^{101}\right)-\left(1+5+5^2+...+5^{100}\right)\)

\(4M=5^{101}-1\)

\(M=\frac{5^{101}-1}{4}\)

b) \(N=2+2^2+...+2^{100}\)

\(2N=2^2+2^3+...+2^{101}\)

\(2N-N=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)

\(N=2^{101}-2\)

Lê Hà Phương
31 tháng 7 2016 lúc 14:11

Bài 2:

a) \(16^{32}=\left(2^4\right)^{32}=2^{128}\) 

\(32^{16}=\left(2^5\right)^{16}=2^{80}\)

Vì \(2^{128}>2^{80}\Rightarrow16^{32}>32^{16}\)

Lê Nguyễn Khánh Huyền
31 tháng 7 2016 lúc 14:48

MÌNH KHÔNG HIỂU GÌ CẢ

CAO HOÀNG LÂM
Xem chi tiết
Đỗ Hoàng Tâm Như
26 tháng 12 2022 lúc 5:54

S = 20 + 2 + 22 + 23 + 24 +25 +26 +27 + 28 + 29
2S = 2.( 20 + 2 + 22 + 23 + 24 +25 +26 +27 + 28 + 29)

2S = 2 +  22 + 23 + 24 +25 +26 +27 + 28 + 29 + 210

S = (2 +  22 + 23 + 24 +25 +26 +27 + 28 + 29 + 210) - (20 + 2 + 22 + 23 + 24 +25 +26 +27 + 28 + 29)

S = 210 - 20

ta có: 5 x 28 = ( 4 + 1) x 28 = 4 . 28 + 28 = 22 . 28 + 28 = 210 + 28

vì 210 - 2< 210 + 28 nên S < 5 x 28