1 Hệ số trong khai triển của đa thức (1/2x+2)2
2 gia trị rút gọn của (x-1)(x+2)-(x+1)x
Hệ số của x 9 sau khi khai triển và rút gọn đa thức f ( x ) = ( 1 + x ) 9 + ( 1 + x ) 10 + . . . + ( 1 + x ) 14 là:
A. 2901
B. 3001
C. 3010
D. 3003
Bài 1:
\(\left(x-2\right)\left(2x+5\right)-2x^2-1=0\)
\(\Leftrightarrow2x^2+x-10-2x^2-1=0\)
\(\Leftrightarrow x-11=0\Leftrightarrow x=11\)
Bài 2:
\(P=\left|2-x\right|+2y^4+5\)
Ta thấy:
\(\begin{cases}\left|2-x\right|\ge0\\2y^4\ge0\end{cases}\)
\(\Rightarrow\left|2-x\right|+2y^4\ge0\)
\(\Rightarrow\left|2-x\right|+2y^4+5\ge5\)
\(\Rightarrow P\ge5\)
Dấu = khi \(\begin{cases}\left|2-x\right|=0\\2y^4=0\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}x=2\\y=0\end{cases}\)
Vậy MinP=5 khi \(\begin{cases}x=2\\y=0\end{cases}\)
Bài 4:
2(2x+x2)-x2(x+2)+(x3-4x+13)
=2x2+4x-x3-2x2+x3-4x+13
=(2x2-2x2)+(4x-4x)-(-x3+x3)+13
=13
Tính tổng các hệ số của đa thức sau sau khi khai triển và thu gọn.
P(x)=(x^4 + 4x^2 - 5x + 1)*2014*2015*(2x^4 - 4x^2 + 4x -1)
Tìm số hạng chứa x¹² trong khai triển thu gọn của đa thức P(x)=2x(1-x)¹⁵
Lời giải:
\(P(x)=2x(1-x)^{15}=2x\sum \limits_{k=0}^{15}C^k_{15}(-x)^k=2\sum \limits_{k=0}^{15}C^k_{15}(-1)^kx^{k+1}\)
Số hạng chứa $x^{12}$
$\Rightarrow k+1=12\Rightarrow k=11$
Vậy số hạng chứa $x^{12}$ là:
$2C^{11}_{15}(-1)^{11}x^{12}=-2730$
Tìm hệ số của x13 trong khai triển \(f\left(x\right)=\left(\dfrac{1}{4}+x+x^2\right)^3\left(2x+1\right)^{15}\) thành đa thức
\(f\left(x\right)=\sum\limits^3_{i=0}C_3^i\left(x+x^2\right)^i.\left(\dfrac{1}{4}\right)^{3-i}\sum\limits^{15}_{k=0}C_{15}^k\left(2x\right)^k\)
\(=\sum\limits^3_{i=0}\sum\limits^i_{j=0}C_3^i.C_i^jx^j.\left(x^2\right)^{i-j}\left(\dfrac{1}{4}\right)^{3-i}\sum\limits^{15}_{k=0}C_{15}^k.2^k.x^k\)
\(=\sum\limits^3_{i=0}\sum\limits^i_{j=0}\sum\limits^{15}_{k=0}C_3^iC_i^jC_{15}^k\left(\dfrac{1}{4}\right)^{3-i}.2^k.x^{2i+k-j}\)
Số hạng chứa \(x^{13}\) thỏa mãn:
\(\left\{{}\begin{matrix}0\le i\le3\\0\le j\le i\\0\le k\le15\\2i+k-j=13\end{matrix}\right.\)
\(\Rightarrow\left(i;j;k\right)=\left(0;0;13\right);\left(1;0;12\right);\left(1;1;11\right);\left(2;0;11\right);\left(2;1;10\right);\left(2;2;9\right);\left(3;0;10\right);\left(3;1;9\right)\)
\(\left(3;2;8\right);\left(3;3;7\right)\) (quá nhiều)
Hệ số....
1)Nghiệm của đa thúc 4x^2+12x+9
2)22-[-5-(-9)]
3)Hệ số của x^2 trong khai triển của (1/2x+3)^2
4)125.6^9.10^5
5)Giá trị của x để 3-x^2-2x đạt giá trị nhỏ nhất
6)Giá trị a<0 thỏa mãn hằng đẳng thức (x-a)(x+a)=x^2-169
7)Số tự nhiên thỏa mãn:2.3^x+3^x+2=99
8)Giá trị của biểu thức (5x+7)(9-2a)+23với a=5
9)Giá trị rút gọn của (x-1)(x+2)-(x+1)x
10)Giá trị nhỏ nhất của biểu thức A=x(x+1)
Sắp theo thứ tự tăng dần
Bài 3: Cho đa thức H(x) = ( 2x – 1)20.
a) Tính tổng hệ số của đa thức H(x) khi khai triển .
b) Tính tổng hệ số bậc chẵn trừ tổng hệ số bậc lẽ của đa thức H(x) khi khai triển .
cho đa thức f(x)=(x+1)(x2-2)2012
a) tính f(1);f(-1)
b) gọi M và N lần lượt là tổng các hệ số của các hạng tử bậc chẵn của đa thức f(x) sau khi đã khai triển và rút gọn. Tính M và N
hệ số của x9 sau khi khai triển và rút gọn đa thức :
\(\left(1+x\right)^9+\left(1+x\right)^{10}+....+\left(1+x\right)^{14}\)
là bao nhiêu ?