Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thiên Dương
Xem chi tiết
Nguyễn Ngọc Quý
18 tháng 8 2015 lúc 9:41

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{1}{100}.50=\frac{1}{2}\)

Vậy \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{1}{2}\)

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}

Thao Nhi
18 tháng 8 2015 lúc 9:43

\(\frac{1}{51}

Nguyễn Ngọc Linh
Xem chi tiết
Nguyễn Minh Trí
11 tháng 8 2015 lúc 11:23

->1/51+1/52+...+1/100>1/100+1/100+...+1/100(50 lần 1/100)                                           (50 là số số hạng từ 51 đến 100)                                                                                    =>1/100+1/100+...+1/100=50/100=1/2 =>1/51+1/52+...+1/100>1/2       (ĐPCM)            ->1/51+1/52+...+1/100<1/51+1/51+...+1/51(50 lần 1/51)                                                   =>1/51+1/51+...+1/51=50/51<1                                                                                        =>1/51+1/52+...+1/100<50/51<1=>1/51+1/52+...+1/100<1   (ĐPCM)

Song Ngu
23 tháng 3 2017 lúc 20:58

dung rui do

Ngô Bảo Lan
28 tháng 3 2018 lúc 22:38

Chứng minh rằng: 1/2 < 1/51+1/52+1/53+.....+1/100<1

Nguyên Minh Hiếu
Xem chi tiết
Tran Duc Dung
Xem chi tiết
Katherine Lilly Filbert
2 tháng 5 2015 lúc 19:29

Đề là gì z????????????                                                                                        

Michiel Girl mít ướt
2 tháng 5 2015 lúc 19:29

đây là j`? đầu đề hổng có, làm sao mà giải đc?????

Nguyễn Thúc Cát Tường
28 tháng 12 2017 lúc 6:25

đề thiếu

Bùi Nhật Minh
Xem chi tiết
Trần Thị Đảm
Xem chi tiết
Nguyễn Anh Đào
Xem chi tiết
Le Nhat Minh
8 tháng 1 2019 lúc 10:08

ai trả lời hộ cái

Đỗ Kiều Minh Ngọc
21 tháng 1 2021 lúc 21:52

Mik chịu.Khó quá

Khách vãng lai đã xóa
Nguyễn Xuân Bách
Xem chi tiết
Nguyễn Tất  Hùng
Xem chi tiết
Nguyễn Phương Uyên
13 tháng 10 2018 lúc 19:57

\(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{50}\)

\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\left(đpcm\right)\)

Nguyễn Phạm Hồng Anh
13 tháng 10 2018 lúc 20:04

Ta có : \(VT=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{99.100}\)

               \(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{99}-\frac{1}{100}\)

                \(=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{100}\right)\)

                \(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+...+\frac{1}{100}\right)\) 

                 \(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)\)

                   \(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}=VP\)     

\(\Rightarrow\) \(ĐPCM\)