tinh nhanh
2012*2010-15
1915+2010*2011
tinh nhanh B=1/1+2009/2011+2009/2010 + 1/1+2010/2009+2010/2011 + 1/1+2011/2009+2011/2010
tinh nhanh
(1-1/2010).(1-2/2010).(1-3/2010).......(1-2011/2010)
\(\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right)...\left(1-\frac{2011}{2010}\right)\)
\(=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{1010}\right).\left(1-\frac{3}{2010}\right)....\left(1-\frac{2010}{2010}\right).\left(1-\frac{2011}{2010}\right)\)
\(=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right)...\left(1-1\right).\left(1-\frac{2011}{2010}\right)\)
\(=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right)...0.\left(1-\frac{2011}{2010}\right)\)
\(=0\)
tinh tong :
1/1:2+1/2:3+1/3:4+...+1/2009:2010+1/2010:2011
So sánh A và B,biết:A=2010+2011/2010+2011 và B=2010/2011+2011/2010
Tìm phần nguyên của (2011^2011+2010^2010)/(2011^2011-2010^2010) (đây là phân số nhé)
So sánh A và B với A=(20112010+20102010)2011 và B=(20112011+20102011)2010
Ta có :
\(A=\left(2010.2010^{2010}+2010.2011^{2010}\right)^{2010}+\left(2011.2010^{2010}+2011.2011^{2010}\right)^{2010}\)
\(\Rightarrow\left(2010.2010^{2010}+2011.2011^{2010}\right)^{2010}=B\)
So sánh :
A = 2009/2010 + 2010/2011 + 2011/2012
B = 2009 + 2010 + 2011/2010 + 2011 + 2012
Có : \(2009+2010>\dfrac{2009}{2010}\) ; \(2011+2012>\dfrac{2011}{2012}\)
\(\dfrac{2011}{2010}>1\) ; \(\dfrac{2010}{2011}< 1\) \(\Rightarrow\dfrac{2011}{2010}>\dfrac{2010}{2011}\)
Ta có : \(2009+2010+\dfrac{2011}{2010}+2011+2012>\dfrac{2009}{2010}+\dfrac{2010}{2011}+\dfrac{2011}{2012}\)
\(\Leftrightarrow B>A\)
Hay \(A< B\)
khong dung may tinh hay so sanh
A 2011^2010+1/2011^2011+1
mk sử dụng điện thoại đc ko?? So sánh cái j vs cái j???
Ơ! Có mỗi cái vế A thì làm sao so sánh đc hả bạn? Bạn xem lại xem có thiếu đề ko vậy??
Cho M= (20102011 + 20112011)2010 ; N= (20102010 + 20112010)2011. So sánh M và N
\(N=\left(2010^{2010}+2011^{2010}\right)^{2011}=\left(2010^{2010}+2011^{2010}\right)^{2010}.\left(2010^{2010}+2011^{2010}\right)\)
\(>\left(2010^{2010}+2011^{2010}\right)^{2010}.2011^{2010}=\left[\left(2010^{2010}+2011^{2010}\right)2011\right]^{2010}\)
\(>\left(2010^{2010}.2010+2011^{2010}.2011\right)^{2010}=\left(2010^{2011}+2011^{2011}\right)^{2010}=M\)
Vậy M < N,