Cho A>B, A và B cùng một số dư khi chia cho 2015.Chứng tỏ A - B chia hết cho 2015.
Giải nha
1,Cho a > b.A và b cùng số dư khi chia cho 2015
Chứng tỏ a - b chia hết cho 2015
2,cho 2016 số tự nhiên bất kì.Chứng tỏ luôn tìm được 2 số mà hiệu của nó chia hết cho 2015.Gợi Ý :áp dụng bài 1
3,Cho A:5 dư 2
Cho B:5 dư 3
Chứng tỏ a x b -1 chia hết cho 5
4,Chứng tỏ a/b +b/a > hoặc = 2
Ai nhanh mk cho 12tick luôn.mk cần gấp .Thanks
Cho a,b thuộc N. Chứng tỏ rằng nếu 5a + 3b và 13a + 8b cùng chia hết cho 2015 thì a và b cũng chia hết cho 2015
**Có: 5a + 3b chia hết 2015 => 8(5a+3b) chia hết 2015 => 40a + 24b chia hết 2015
Và: 13a + 8b chia hết 2015 => 3(13a + 8b) chia hết 2015 => 39a + 24b chia hết 2015
=> 40a + 24b -(39a +24b) chia hết 2015 => a chia hết 2015
** Có: 5a + 3b chia hết 2015 => 13(5a+3b) = 65a+39b chia hết 2015
và: 13a + 8b chia hết 2015 => 5(13a + 8b) = 65a + 40b chia hết 2015
=> 65a + 40b -(65a +39b) chia hết 2015 => b chia hết 2015
Cho a,b thuộc N .Chứng tỏ rằng nếu 7a+2b và 31a +9b cùng chia hết cho 2015 thì a,b cũng chia hết cho 2015
Cho a,b là hai số tự nhiên. Chứng tỏ rằng nếu 5a+3b và 13a+8b cùng chia hết cho 2015 thì a+b cũng chia hết cho 2015
các bẠN GIÚP MÌNH ĐI
cho a,b thuộc N. chứng tỏ rằng nếu 7a+2b và 31a+9b cùng chia hết cho 2015 thì a và b cũng chia hết cho 2015
giải cho mk nhanh nhanh nha
cho a,b là số nguyên .chứng minh a^2015+b^2015+c^2015 chia hết cho 6 khi và chỉ khi a+b+c chia hết cho 6
Cho a,b thuộc N. Chứng tỏ rằng nếu 5a+3b và 13a+8b cùng chia hết cho 2015 thì a và b cũng chia hết cho 2015?
*giúp mình với! T^T*
Ta có: 5a+3b và 13a+8b chia hết cho 2015
=>2(13a+8b)-5(5a+3b) chia hết cho 2015
=>(26a+16b)-(25a+15b) chia hết cho 2015
=>a+b chia hết cho 2015
=>(5a+3b)-3(a+b) chia hết cho 2015
=>(5a+3b)-(3a+3b) chia hết cho 2015
=>2a chia hết cho 2015
Mà(2;2015)=1
=>a chia hết cho 2015
=>(a+b)-a chia hết cho 2015
=>b chia hết cho 2015
Vậy nếu 5a+3b và 13a+8b cùng chia hết cho 2015 thì a và b chia hết cho 2015(đpcm)
chứng minh rằng nếu a và b là các số tự nhiên sao cho 7a+4b và 5a+3b cùng chia hết cho 2015 thì a và b cùng chia hết cho 2015
cho các số nguyên a,b,c. Chứng minh rằng a2015+b2015+c2015 chia hết cho 6 khi và chỉ khi a+b+c chia hết cho 6
\(S=a^{2015}+b^{2015}+c^{2015}-\left(a+b+c\right)=a\left(a^{2014}-1\right)+b\left(b^{2014}-1\right)+c\left(c^{2014}-1\right)\)
Ta có : \(a\left(a^{2014}-1\right)=a\left(a^{1007}-1\right)\left(a^{1007}+1\right)\) Bạn tự CM chia hết cho 6
=> S chia hết cho 6
=> dpcm