cho x/6=-2/3.Số nguyên x thích hợp là
Câu 07: Cho . Số nguyên x thích hợp là: A. -6 B. 2 C. 6 D. -2
1.Bạn hãy điền số thích hợp vào chỗ trống:
Cho tập hợp B={ a ϵ Z | (a2 + 3a + 6 ) ⋮ ( a + 3 ) }.Số phần tử thuộc tập hợp B là : ... ?
2.Bạn hãy điền số thích hợp vào ô trống:
Trong các số nguyên x thuộc tập hợp A={x ϵ Z |( 4x - 1 ) ⋮ ( 4x + 5 ) }. Số lớn nhất có giá trị là : ...?
Cái này có trong Vioedu á. Thanks nhiều ✿
B = {a \(\in\) Z| (a2 + 3a + 6) ⋮ (a + 3)}
a2 + 3a + 6 ⋮ a + 3
a.(a + 3) + 6 ⋮ a + 3
6 ⋮ a + 3
a + 3 \(\in\) Ư(6) = {-6; -3; -2; -1; 1; 2; 3; 6}
Lập bảng ta có:
a + 3 | - 6 | - 3 | -2 | -1 | 1 | 2 | 3 | 6 |
a | - 9 | - 6 | -5 | -4 | -2 | -1 | 0 | 3 |
Theo bảng trên ta có: a \(\in\) {-9; -6; -5; -4; -2; -1; 0; 3}
B = {-9; -6; -5; -4; -2; -1; 0; 3}
Vậy số phần tử tập B là 8 phần tử.
1.Tìm chữ số thích hợp x và y để 31x4y chia hết cho 2 , 3 , 9 .
2.Tìm số nguyên n sao cho (n - 6) chia hết (n - 1 )
Bài 1:
$\overline{31x4y}\vdots 2$ nên $y$ là số chẵn.
$\Rightarrow y\in \left\{0;2;4;6;8\right\}$
Nếu $y=0$. Để $\overline{31x40}\vdots 3;9$ thì:
$3+1+x+4+0\vdots 9\Rightarrow 8+x\vdots 9\Rightarrow x=1$. Ta được số $31140$
Nếu $y=2$. Để $\overline{31x42}\vdots 3;9$ thì:
$3+1+x+4+2\vdots 9\Rightarrow 10+x\vdots 9\Rightarrow x=8$. Ta được số $31842$
Nếu $y=4$. Để $\overline{31x44}\vdots 3;9$ thì:
$3+1+x+4+4\vdots 9\Rightarrow 12+x\vdots 9\Rightarrow x=6$. Ta được số $31644$
Tương tự ta xét TH $y=6$ và $y=8$ ta được số $31446, 31248$
Bài 2:
$n-6\vdots n-2$
$\Rightarrow (n-2)-4\vdots n-2$
$\Rightarrow 4\vdots n-2$
$\Rightarrow n-2\in Ư(4)$
$\Rightarrow n-2\in \left\{\pm 1; \pm 2; \pm 4\right\}$
$\Rightarrow n\in \left\{3; 1; 4; 0; 6; -2\right\}$
1:tập hợp các chữ số tận cùng có thể có của 1 số chính phương là?
2:số nguyên x thỏa mãn 55-(6-x)=15-(-6) là x=?
3:số nguyên x thỏa mãn x-(-25-17=2x)=6+x là x=?
4:tìm số nguyên x sao cho -19-x là số nguyên âm nhỏ nhất có ba chữ số.vậy x=........
1. {0;1;4;5;6;9}
2. 55-(6-x) = 9
6-x = 55-9
6-x = 46
x = 6-46
x = -40
3. 6+x = x-(-6) => -25-17-2x = -6
-42-2x = -6
2x = -42-(-6)
2x = -36
x = -36/2
x = -18
4. Số nguyên âm nhỏ nhất có 3 chữ số là -999 => -19-x = -999
x = -19-(-999)
x = 980
Cho phép tính:
4 x 9 – 6 … 3 x 8 + 6
Số thích hợp điền vào chỗ chấm là
A. >
B. <
C. =
4 x 9 – 6 = 30
3 x 8 + 6 = 30
Nên dấu thích hợp điền vào ô trống là =
Đáp án là C
Tổng :
2^100 x 7 x 11 + 3^81 x 13 x 14
Là số nguyên hay hợp số? (giải thích)
1. Cho p là số nguyên tố lớn hơn 3. Hỏi p^2 là số nguyên tố hay hợp số ? Giải thích.
2. Tìm số tự nhiên x, y biết : 3xy - 5y + 6x = 30 .
1)ta có:
p2=p.p mà p>3 =>p.p chia hết cho p
=>p2 là hợp số
1. Tìm x;y ∈ N* để \(x^4+4y^4\) là số nguyên tố.
2. Cho n ∈ N* CMR: \(n^4+4^n\) là hợp số với mọi n>1.
3. Cho biết p là số nguyên tố thỏa mãn: \(p^3-6\) và \(2p^3+5\) là các số nguyên tố. CMR: \(p^2+10\) cũng là số nguyên tố.
4. Tìm tất cả các số nguyên tố có 3 chữ số sao cho nếu ta thay đổi vị trí bất kì ta vẫn thu được số nguyên tố.
1.
\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
Do x, y nguyên dương nên số đã cho là SNT khi:
\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)
\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)
Thay vào kiểm tra thấy thỏa mãn
2. \(N=n^4+4^n\)
- Với n chẵn hiển nhiên N là hợp số
- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)
\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)
\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)
Mặt khác:
\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)
\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)
\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1
\(\Rightarrow\) N là hợp số
Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).
Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9
Nó cũng không thể chỉ chứa các chữ số 3 và 9 (sẽ chia hết cho 3)
Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)
1)số nguyên x lớn nhất để -4 - x >3 là.....
2)Số cặp số (x;y)thỏa mãn (x^2 +2)(y^4+6)=10
3)Gía trị nguyên nhỏ nhất của n để A=5/n-7 nguyên để n=...
4)Tập hợp các số nguyên x sao cho x^2+4.x+5 là bội của x+4 là {....}
(nhập các giá trị theo thứ tự tăng dần )
5)Số các số tự nhiên có bốn chữ số chia 3 dư 1 và chia 5 dư 2 là....
6)Số cặp số nguyên (x;y) thỏa mãn (2x - 5 ) (y -6) = 17 là....
Một bài làm không được mà bạn ra 6 bài thì ............
1) -4 - x > 3 => -4 - 3 > x => -7 > x => số nguyên x lớn nhất = -8
2) Vì x2 + 2 \(\ge\) 2 ; y4 + 6 \(\ge\) 6 với mọi x; y => (x2 + 2). (y4 + 6) \(\ge\) 2.6 = 12 > 10
=> Không tồn tại x; y để thỏa mãn
3) A nguyên khi 5 chia hết cho n- 7 hay n - 7 là ước của 5
mà n nhỏ nhất nên n - 7 nhỏ nhất => n - 7 = -5 => n = 2
4) x2 + 4x + 5 = x(x+ 4) + 5 chia hết cho x + 4 => 5 chia hết cho x + 4
=> x + 4 \(\in\) {5;-5;1;-1} => x \(\in\) {1; -9; -3; -5}
5) Gọi số đó là n
n chia 3 dư 1 => n - 1 chia hết cho 3 => n - 1 + 9 = n + 8 chia hết cho 3
n chia cho 5 dư 2 => n - 2 chia hết cho 5 => n - 2 + 10 = n + 8 chia hết cho 5
=> n + 8 chia hết cho 3 và 5 => n + 8 chia hết cho 15 => n + 8 \(\in\) B(15)
Vì n có 4 chữ số nên n + 8 \(\in\) {68.15 ; 69.15 ; ...' ; 667.15}
=> có (667 - 68) : 1 + 1 = 600 số
6) (2x-5).(y-6) = 17 = 1.17 = 17.1 = (-1).(-17) = (-17).(-1)
=> có 4 cặp x; y thỏa mãn