cho tam giac abc vẽ các tam giác abd;ace vuông cân tại d và e ở phía ngoài tam giác abc .M là trung diem của de: cm tam giác bnc vuong cân:
CHo tam giác đều ABC. Vẽ các tam giác đều ABD và ACE nằm ngoài tam giác ABC. Nối D với E. C/m tam giac AVDXCD deu
cho tam giác nhọn abc. vẽ ra phía ngoài tam guac abc các tam giác đều abd và ace. gọi m là giao điểm của dc và be. cmr
a) tam giac abe= tam giac adc
b) góc bmc=120 độ
Cho tam giác ABC nhọn, vẽ ra phía ngoài tam giac ABC các tam giac đều ABD, ACE. Gọi I là trực tâm của tam giác ABD, H là trung điểm của BC. Tính góc IEH.
CÁC BẠN LÀM HỘ MÌNH VỚI ! XIN CẢM ƠN
Một cách giải khác:
Dựng tam giác đều EHF sao cho F nằm trên nửa mặt phẳng bờ BC có chứa A.
Khi đó: ^CEH = ^AEF (=600 - ^AEH). Kết hợp với EC=EA, EH=EF suy ra \(\Delta\)HEC = \(\Delta\)FEA (c.g.c)
=> CH = AF (2 cạnh tương ứng) hay BH = AF (Do BH=CH)
Ta có: ^IAF = 3600 - ^EAF - ^EAC - ^BAC - IAB = 3600 - 600 - 300 - ^ECH - ^BAC (^EAF=^ECH vì \(\Delta\)HEC = \(\Delta\)FEA)
= 2700 - 600 - ^BAC - ^ACB = 300 + ^ABC = ^IBA + ^ABC = ^IBH
Xét \(\Delta\)BIH và \(\Delta\)AIF có: IB = IA, BH = AF (cmt), ^IBH = ^IAF (cmt) => \(\Delta\)BIH = \(\Delta\)AIF (c.g.c)
Suy ra IH = IF (2 cạnh tương ứng). Mà EH = EF nên IE trung trực của HF.
Xét \(\Delta\)EHF đều có EI là trung trực của HF => EI là phân giác của ^HEF => ^IEH = ^HEF/2 = 300
Kết luận: ^IEH = 300.
Trên tia IH lấy điểm K sao cho HI=HK
Xét tam giác HIB và tam giác HKC có:
HI=HK (cách vẽ)
HB=HC ( H là trung điểm BC)
\(\widehat{H_1}=\widehat{H_2}\)( đối định )
=> \(\Delta HIB=\Delta HKC\)(c.g.c)
=> IB=CK mà IB=AI ( dễ tự chứng minh)
=> CK=AI (1)
\(\widehat{IAE}=\widehat{A_1}+\widehat{A_2}+\widehat{A_3}=30^o+\widehat{A_2}+60^o=90^o+\widehat{A_2}\)
\(\widehat{ECK}=\widehat{C_1}=360^o-\left(\widehat{C_2}+\widehat{C_3}+\widehat{C_4}\right)\)Vì \(\Delta HIB=\Delta HKC\)=> \(\widehat{C_2}=\widehat{HBI}\)=\(\widehat{B_1}+\widehat{B_2}=30^o+\widehat{B_1}\)
và \(\widehat{C_4}=60^o\)
=> \(\widehat{ECK}=\widehat{C_1}=360^o-\left(90^o+\widehat{B_1}+\widehat{C_3}_{ }\right)=90^o+\widehat{A_2}\)
=> \(\widehat{IAE}=\widehat{ECK}\)(2)
và AE= EC ( tam giác AEC đều) (3)
Từ (1), (2), (3)
=> \(\Delta IAE=\Delta KCE\)
=> IE=KE => tam giác IEK cân có EH là đường trung tuyến=> EH cũng là đường phân giác
\(\widehat{AEI}=\widehat{CEK}\)=> \(\widehat{IEK}=\widehat{IEC}+\widehat{CEK}=\widehat{IEC}+\widehat{AEI}=\widehat{AEC}=60^o\)
=> \(\widehat{IEH}=60^o:2=30^o\)
Cho tam giác ABC nhọn, vẽ ra phía ngoài tam giac ABC các tam giac đều ABD, ACE. gọi I và P lần lượt là trung điểm của AD và CE. Điểm F nằm trên BC sao cho BF=3*FC. Tính FBI
cho tam giac ABC có góc A nhọn. Vẽ về phía ngoài của tam giác ABC các tam giác đêu ABD và tam giác ACE. Gọi M,N lần lượt là trung điểm của BE và CD. Chứng minh tam giác AMN đều
( GT, KL bạn tự viết nha )
Cho tam giác ABC có Â khác 60 độ.Ở phía ngoài tam giác vẽ các tam giac đều ABD, ACE. Trên nửa mặt phẳng bờ BC có chứa A vẽ tam giác đều BCK. CMR:ADKE là hình bình hành
cho tam giac ABC nhọn .Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE.
a,cm BE=DC
b.gọi H là giao cua BE và CD.tính số đo BHC
Cho tam giac ABC có các góc nhỏ hơn 120 độ. Vẽ ở phía ngoài tam giác ABC các tam giác đều ABD, ACE. Gọi M là giao điểm của DC và BE.
CMR: góc BMC=120 độ ; góc AMB=120 độ
1.Cho hình thanh ABCD (AB//CD) có góc DAB = góc DBC. Chứng minh tam giac ABD ~ tam giac BDC
2.Cho tam giác ABC, D thuộc cạnh AC sao cho góc ABD = góc C. Chứng minh tam giac ABC~ tam giác ADB