Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lê quý dương
Xem chi tiết
linhlinh
Xem chi tiết
Messi
Xem chi tiết
Nguyễn Tất Đạt
24 tháng 2 2019 lúc 10:26

Một cách giải khác:

A B C D E H I F

Dựng tam giác đều EHF sao cho F nằm trên nửa mặt phẳng bờ BC có chứa A.

Khi đó:  ^CEH = ^AEF (=600 - ^AEH). Kết hợp với EC=EA, EH=EF suy ra \(\Delta\)HEC = \(\Delta\)FEA (c.g.c)

=> CH = AF (2 cạnh tương ứng) hay BH = AF (Do BH=CH)

Ta có: ^IAF = 3600 - ^EAF - ^EAC - ^BAC - IAB = 3600 - 600 - 300 - ^ECH - ^BAC (^EAF=^ECH vì \(\Delta\)HEC = \(\Delta\)FEA)

= 2700 - 600 - ^BAC - ^ACB = 300 + ^ABC = ^IBA + ^ABC = ^IBH

Xét \(\Delta\)BIH và \(\Delta\)AIF có: IB = IA, BH = AF (cmt), ^IBH = ^IAF (cmt) => \(\Delta\)BIH = \(\Delta\)AIF (c.g.c)

Suy ra IH = IF (2 cạnh tương ứng). Mà EH = EF nên IE trung trực của HF.

Xét \(\Delta\)EHF đều có EI là trung trực của HF => EI là phân giác của ^HEF => ^IEH = ^HEF/2 = 300

Kết luận: ^IEH = 300.

Nguyễn Linh Chi
20 tháng 2 2019 lúc 0:11

A B C K E D 1 2 3 1 1 2 2 1 2 3 4 I H

Trên tia IH lấy điểm K sao cho HI=HK

Xét tam giác HIB và tam giác HKC có:

HI=HK (cách vẽ)

HB=HC ( H là trung điểm BC)

\(\widehat{H_1}=\widehat{H_2}\)( đối định )

=> \(\Delta HIB=\Delta HKC\)(c.g.c)

=> IB=CK mà IB=AI ( dễ tự chứng minh)

=> CK=AI (1)

\(\widehat{IAE}=\widehat{A_1}+\widehat{A_2}+\widehat{A_3}=30^o+\widehat{A_2}+60^o=90^o+\widehat{A_2}\)

\(\widehat{ECK}=\widehat{C_1}=360^o-\left(\widehat{C_2}+\widehat{C_3}+\widehat{C_4}\right)\)Vì \(\Delta HIB=\Delta HKC\)=> \(\widehat{C_2}=\widehat{HBI}\)=\(\widehat{B_1}+\widehat{B_2}=30^o+\widehat{B_1}\)

và \(\widehat{C_4}=60^o\)

=> \(\widehat{ECK}=\widehat{C_1}=360^o-\left(90^o+\widehat{B_1}+\widehat{C_3}_{ }\right)=90^o+\widehat{A_2}\)

=> \(\widehat{IAE}=\widehat{ECK}\)(2)

và AE= EC ( tam giác AEC đều) (3)

Từ (1), (2), (3)

=> \(\Delta IAE=\Delta KCE\)

=> IE=KE => tam giác IEK cân  có EH là đường trung tuyến=> EH cũng là đường phân giác 

\(\widehat{AEI}=\widehat{CEK}\)=> \(\widehat{IEK}=\widehat{IEC}+\widehat{CEK}=\widehat{IEC}+\widehat{AEI}=\widehat{AEC}=60^o\)

=> \(\widehat{IEH}=60^o:2=30^o\)

Messi
20 tháng 2 2019 lúc 19:48

Cảm ơn bạn nhiều nha!

Duong
Xem chi tiết
La Bảo Trân
Xem chi tiết

A B C D E M N

 ( GT, KL bạn tự viết nha )

Thái Lâm Oanh
Xem chi tiết
Hoàng Thị Linh Chi
Xem chi tiết
Biokgnbnb
Xem chi tiết
Ngọc tấn đoàn
Xem chi tiết