Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Quyên
Xem chi tiết
Hoàng Phúc
11 tháng 7 2016 lúc 9:58

Đặt \(A=\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+.....+\frac{1}{4^{1000}}\)

\(=>4A=1+\frac{1}{4}+\frac{1}{4^2}+.....+\frac{1}{4^{999}}\)

\(=>4A-A=\left(1+\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{999}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{1000}}\right)\)

\(=>3A=1-\frac{1}{4^{1000}}=>A=\frac{1-\frac{1}{4^{1000}}}{3}=\frac{1}{3}-\frac{1}{\frac{4^{1000}}{3}}<\frac{1}{3}\)

Vậy.......................
 

Thanh Lự Nguyễn Thị
Xem chi tiết
Isolde Moria
27 tháng 11 2016 lúc 13:57

Ta có :

\(C=\frac{1}{4}+\frac{1}{4^2}+.....+\frac{1}{4^{1000}}\)

\(\Rightarrow4C=1+\frac{1}{4}+.....+\frac{1}{4^{1999}}\)

\(\Rightarrow4C-C=\left(1+\frac{1}{4}+.....+\frac{1}{4^{1999}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+.....+\frac{1}{4^{1000}}\right)\)

\(\Rightarrow3C=1-\frac{1}{4^{1000}}\)

\(\Rightarrow C=\frac{1}{3}-\frac{1}{3.4^{1000}}< \frac{1}{3}\)

=> C < 1 / 3

Nguyễn Huy Tú
27 tháng 11 2016 lúc 14:02

Ta có:

\(C=\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{1000}}\)

\(\Rightarrow4C=1+\frac{1}{4}+...+\frac{1}{4^{999}}\)

\(\Rightarrow4C-C=\left(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{999}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{999}}+\frac{1}{4^{1000}}\right)\)

\(\Rightarrow3C=1-\frac{1}{4^{1000}}\)

\(\Rightarrow C=\left(1-\frac{1}{4^{1000}}\right).\frac{1}{3}\)

\(\Rightarrow C=\frac{1}{3}-\frac{1}{4^{1000}.3}\)

\(\frac{1}{3}>\frac{1}{3}-\frac{1}{4^{1000}.3}\)

\(\Rightarrow C< \frac{1}{3}\)

Vậy \(C< \frac{1}{3}\)

Nguyễn Phương Uyên
Xem chi tiết
Hoàng Ninh
18 tháng 3 2018 lúc 14:57

Ta có:

1 = \(\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+............+\frac{1}{10}\)(10 phân số \(\frac{1}{10}\))

Mà \(\frac{1}{2}>\frac{1}{10};\frac{2}{3}>\frac{1}{10};............;\frac{9}{10}>10\)

\(\Rightarrow M>1\)

Vậy M > 1

Incredient
18 tháng 3 2018 lúc 14:49

Ta có:

1/2=0,5

2/3>0,6

<=>1/2+2/3>1,1>1

<=>1/2+2/3+3/4+...+9/10>1

Anh Hải (- Truy kích 3.0...
18 tháng 3 2018 lúc 14:51

Vì 1 = \(\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}\)

\(\Rightarrow\)M > 1 vì \(\frac{1}{2}>\frac{1}{10};\frac{2}{3}>\frac{1}{10};...;\frac{9}{10}>\frac{1}{10}\)

\(\Rightarrow M>1\)

Phạm Ngọc Thạch
Xem chi tiết
Trần Thị Loan
7 tháng 8 2015 lúc 21:16

\(4.M=4.\left(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+...+\frac{2014}{4^{2014}}\right)=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2014}{4^{2013}}\)

=> 4M - M = \(1+\left(\frac{2}{4}-\frac{1}{4}\right)+\left(\frac{3}{4^2}-\frac{2}{4^2}\right)+...+\left(\frac{2014}{4^{2013}}-\frac{2013}{4^{2013}}\right)-\frac{2014}{4^{2014}}\)

=> 3.M = \(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)

Tính \(N=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}\)

=> \(4.N=4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}\)

=> 4N - N = 4 - \(\frac{1}{4^{2013}}\)=> N = \(\frac{4}{3}-\frac{1}{3.4^{2013}}\)=> N < 4/3

Ta có:  3M < N => M < N/3 => M < (4/3)/3 = 2/9

vậy M < 4/9

 

Mai Thanh Hoàng
Xem chi tiết
Hồ Lê Phú Lộc
Xem chi tiết
o0o~Baka~o0o
Xem chi tiết
vu
28 tháng 3 2018 lúc 13:21

1/100 hả e hay là 1/10

o0o~Baka~o0o
29 tháng 3 2018 lúc 17:16

Dạ 1/100

vu
29 tháng 3 2018 lúc 20:21

theo đây mà làm giờ a bận chuẩn bị KT 1T r

link:  https://olm.vn/hoi-dap/question/148148.html

Thầy giáo dạy Toán
Xem chi tiết
Earth-K-391
Xem chi tiết
Đỗ Thanh Hải
25 tháng 5 2021 lúc 10:46

Ta có 

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

..............

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

=> S < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

S < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(S< 1-\dfrac{1}{100}< 1\)(do 1/100 >0)

ĐPcm

Giải:

\(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}\) 

Ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\) 

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\) 

\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\) 

\(...\) 

\(\dfrac{1}{99^2}=\dfrac{1}{99.99}< \dfrac{1}{98.99}\) 

\(\dfrac{1}{100^2}=\dfrac{1}{100.100}< \dfrac{1}{99.100}\) 

\(\Rightarrow S< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\) 

\(\Rightarrow S< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\) 

\(\Rightarrow S< \dfrac{1}{1}-\dfrac{1}{100}< 1\) 

\(\Rightarrow S< 1\) 

Vậy S < 1.