tìm GTNN của bt sau:F=x^2+6y^2+14z^2-8yz+6zx-4xy
a> Cho x + y + z = 3. Tìm GTLN của biểu thức x*y + y*z + z*x
b> Tìm GTNN của biểu thức M= x^2 + 6y^2 + 14z^2 - 8yz + 6zx - 4xy
Tìm GTNN
a)A=x^2+2y^2−2xy+2x−10yx2+2y2−2xy+2x−10y
b)B=x^2+6y^2+14z−8yz+6zx−4xy
Tìm giá trị nhỏ nhất
A = x2 + 6y2 + 14z2 - 8yz + 6zx - 4xy
Tìm GTNN
a)A=\(x^2+2y^2-2xy+2x-10y\)
b)B=\(x^2+6y^2+14z-8yz+6zx-4xy\)
Lời giải:
a) \(A=x^2+2y^2-2xy+2x-10y\)
\(\Leftrightarrow A=(x-y+1)^2+(y-4)^2-17\)
Ta thấy \((x-y+1)^2; (y-4)^2\geq 0\Rightarrow A\geq -17\)
Vậy \(A_{\min}=-17\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x-y+1=0\\ y-4=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=3\\ y=4\end{matrix}\right.\)
b)
\(B=x^2+6y^2+14z^2-8yz+6xz-4xy\)
\(\Leftrightarrow B=(x-2y+3z)^2+2y^2+5z^2+4yz\)
\(\Leftrightarrow B=(x-2y+3z)^2+2(y+z)^2+z^2\)
Ta thấy \((x-2y+3z)^2; (y+z)^2; z^2\geq 0\forall x,y,z\in\mathbb{R}\)
\(\Rightarrow B\geq 0\Leftrightarrow B_{\min}=0\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x-2y+3z=0\\ y+z=0\\ z=0\end{matrix}\right.\Leftrightarrow x=y=z=0\)
a> Cho x + y = 1. Tìm GTNN của biểu thức: x^3 + y^3 + x^2 + y^2
b> Cho x + y + z = 3. Tìm GTLN của biểu thức xy + yz + zx
c> Tìm GTNN của biểu thức M= x^2 + 6y^2 + 14z^2 - 8yz + 6zx - 4xy
dhgxkkkkkkkkkkkkkkkkkkkkk
a> Cho x + y = 1. Tìm GTNN của biểu thức: x^3 + y^3 + x^2 + y^2
b> Cho x + y + z = 3. Tìm GTLN của biểu thức xy + yz + zx
c> Tìm GTNN của biểu thức M= x^2 + 6y^2 + 14z^2 - 8yz + 6zx - 4xy
a> Cho x + y + z = 3. Tìm GTLN của biểu thức xy + yz + zx
b> Tìm GTNN của biểu thức M= x^2 + 6y^2 + 14z^2 - 8yz + 6zx - 4xy
AI LÀM NHANH NHẤT MÌNH LIKE CHO
a> Cho x + y + z = 3. Tìm GTLN của biểu thức xy + yz + zx
b> Tìm GTNN của biểu thức M= x^2 + 6y^2 + 14z^2 - 8yz + 6zx - 4xy
AI LÀM NHANH NHẤT MÌNH LIKE CHO
Tìm Min:
A= x2+6y2+14z2-8yz+6zx-4xy
Khó quá, giúp mk nha. Ai nhanh mk tk cho. Tks