Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Hà My
Xem chi tiết
Thái Dương Cấn
Xem chi tiết
Đặng Quỳnh Ngân
10 tháng 9 2016 lúc 10:57

LÀM dùm bn 1 câu khó nhất nhé;

B = (x-1)2 + ( y -2)2 +2016 -1 -4

GTNN B = 2011

Nguyễn Thị Ngọc
10 tháng 9 2016 lúc 12:37

A=3(x^2-2x-1/3)

=3(x-1)^2 -4/3

ta có (x-1)^2 >= 0

suy ra a>= 0-4/3

dấu bằng xảy ra khi x-1=0

                                x=1

vậy giá trị nhỏ nhất của A là -4/3 khi x=1

Nguyễn Thị Ngọc
10 tháng 9 2016 lúc 12:42

B=(x-1)^2 +(y-2)^2 +2016-(4+1)

ta có (x-1)^2 lớn hơn hoặc bằng 0

         (y-2)^2 lớn hơn hoặc bằng 0

     suy ra B lớn hơn howcj bằng 0+0+2011

đấu bằng xảy ra khi  x-1=0 suy ra x=1

                                   y-2 =0 suy ra x=2

vậy  GTNN của B là 2011 khi x=1;y=2

trương Đại Thành
Xem chi tiết
kudo shinichi
26 tháng 6 2018 lúc 19:54

\(A=4x^2-12x+11\)

\(A=\left(2x\right)^2-2.2x.3+3^2+2\)

\(A=\left(2x-3\right)^2+2\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x-3\right)^2+2\ge2\forall x\)

Dấu = xảy ra \(\Leftrightarrow\left(2x-3\right)^2=0\Leftrightarrow2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Vậy Amin=2\(\Leftrightarrow x=\frac{3}{2}\)

\(B=x^2-2x+y^2+4y+6\)

\(B=\left(x^2-2x+1\right)+\left(y^2+2.2y+2^2\right)+1\)

\(B=\left(x-1\right)^2+\left(y+2\right)^2+1\)

Ta có:  \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\forall x;y}\)

Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)

Vậy Bmin=1\(\Leftrightarrow x=1;y=-2\)

\(A=-x^2-6x+1\)

\(\Rightarrow-A=x^2+6x-1\)

\(-A=\left(x^2+2.3x+3^2\right)-10\)

\(-A=\left(x+3\right)^2-10\)

\(\Rightarrow A=-\left(x+3\right)^2+10\)

Ta có: \(\left(x+3\right)^2\ge0\forall x\Rightarrow-\left(x+3\right)^2\le0\forall x\Rightarrow-\left(x+3\right)^2+10\le10\forall x\)

Dấu = xảy ra \(\Leftrightarrow-\left(x+3\right)^2=0\Leftrightarrow\left(x+3\right)^2=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

Vậy Amax=10\(\Leftrightarrow\)x= -3

Sửa đề:

\(B=-2x^2-8x-6\)

\(B=-2.\left(x^2+2.2x+2^2\right)+2\)

\(B=-2.\left(x+2\right)^2+2\)

Ta có: \(2.\left(x+2\right)^2\ge0\forall x\Rightarrow-2.\left(x+2\right)^2\le0\forall x\Rightarrow-2.\left(x+2\right)^2+2\le2\forall x\)

Dấu = xảy ra \(\Leftrightarrow-2.\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy Bmax=2\(\Leftrightarrow x=-2\)

ST
26 tháng 6 2018 lúc 19:57

Đề phải là tìm min mới đúng

a, A=4x2-12x+11

=(4x2-12x+9)+2

=(2x-3)2+2

Vì (2x-3)2 \(\ge\) 0 => A=(2x-3)2+2 \(\ge\) 2

Dấu "=" xảy ra khi 2x-3=0 <=> x=3/2

Vậy Amin = 2 khi x=3/2

b, B=x2-2x+y2+4y+6

=(x2-2x+1)+(y2+4y+4)+1

=(x-1)2+(y+2)2+1

Vì \(\left(x-1\right)^2\ge0;\left(y+2\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)

\(\Rightarrow B=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

Dấu "=" xảy ra khi x=1,y=-2

Vậy Bmin = 1 khi x=1,y=-2

Trần Hà My
Xem chi tiết
Ngô Minh Ngọc
7 tháng 12 2015 lúc 21:32

a) =(5x)^2-2*5x+1+3

   =(5x-1)^2+3

suy ra min=3

b) = -(x^2-2x+1)-1

    =-(x^2-1)^2-1

suy ra Max=-1

c)=(x^2-2x+1)+(y^2-4y+4)+1

  =(x^2-1)^2+(y^2-2)^2+1

suy ra Min=1

# mk ko chắc lắm đâu

Thái Lê
Xem chi tiết

giai di em

Zero Two
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
11 tháng 10 2020 lúc 9:56

A = 2x2 + 6x = 2( x2 + 3x + 9/4 ) - 9/2 = 2( x + 3/2 )2 - 9/2 ≥ -9/2 ∀ x

Dấu "=" xảy ra khi x = -3/2

=> MinA = -9/2 <=> x = -3/2

B = x2 - 2x + y2 - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 ∀ x, y

Dấu "=" xảy ra khi x = 1 ; y = 2

=> MinB = 1 <=> x = 1 ; y = 2

C = x2 - 2xy + 6y2 - 12x + 2y + 45

= ( x2 - 2xy + y2 - 12x + 12y + 36 ) + ( 5y2 - 10y + 5 ) + 4

= [ ( x2 - 2xy + y2 ) - ( 12x - 12y ) + 36 ] + 5( y2 - 2y + 1 ) + 4

= [ ( x - y )2 - 2( x - y ).6 + 62 ] + 5( y - 1 )2 + 4

= ( x - y - 6 )2 + 5( y - 1 )2 + 4 ≥ 4 ∀ x, y

Dấu "=" xảy ra khi x = 7 ; y = 1

=> MinC = 4 <=> x = 7 ; y = 1

D = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )

= [ ( x - 1 )( x + 6 ) ][ ( x + 2 )( x + 3 ) ]

= ( x2 + 5x - 6 )( x2 + 5x + 6 )

= ( x2 + 5x )2 - 36 ≥ -36 ∀ x

Dấu "=" xảy ra <=> x2 + 5x = 0

                        <=> x( x + 5 ) = 0

                        <=> x = 0 hoặc x = -5

=> MinD = -36 <=> x = 0 hoặc x = -5

Khách vãng lai đã xóa
Zero Two
Xem chi tiết
Zero Two
Xem chi tiết
Nguyễn Minh Đăng
11 tháng 10 2020 lúc 9:58

1) \(A=2x^2+6x=2\left(x^2+3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(2\left(x+\frac{3}{2}\right)^2=0\Rightarrow x=-\frac{3}{2}\)

Vậy Min(A) = -9/4 khi x = -3/2

2) \(B=x^2-2x+y^2-4y+6\)

\(B=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(B=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy Min(B) = 1 khi x = 1 và y = 2

3) \(C=x^2-2xy+6y^2-12x+2y+45\)

\(C=\left(x^2-2xy+y^2\right)-12\left(x-y\right)+36+\left(5y^2-10y+5\right)+4\)

\(C=\left(x-y\right)^2-12\left(x-y\right)+36+5\left(y-1\right)^2+4\)

\(C=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y-6\right)^2=0\\5\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\y=1\end{cases}}\)

Vậy Min(C) = 4 khi x = 7 và y = 1

4) \(D=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(D=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(D=\left(x^2+5x\right)^2-36\ge-36\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x^2+5x\right)^2=0\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy Min(D) = -36 khi x = 0 hoặc  x = -5

Khách vãng lai đã xóa
Ngân Võ Thi Thu
Xem chi tiết
Kiệt Nguyễn
10 tháng 9 2019 lúc 14:32

1) 

a) \(2x^2-12x+18+2xy-6y\)

\(=2x^2-6x-6x+18+2xy-6y\)

\(=\left(2xy+2x^2-6x\right)-\left(6y+6x-18\right)\)

\(=x\left(2y+2x-6\right)-3\left(2y+2x-6\right)\)

\(=\left(x-3\right)\left(2y+2x-6\right)\)

\(=2\left(x-3\right)\left(y+x-3\right)\)

b) \(x^2+4x-4y^2+8y\)

\(=x^2+4x-4y^2+8y+2xy-2xy\)

\(=\left(-4y^2+2xy+8y\right)+\left(-2xy+x^2+4x\right)\)

\(=2y\left(-2y+x+4\right)+x\left(-2y+x+4\right)\)

\(=\left(2y+x\right)\left(-2y+x+4\right)\)

2)  \(5x^3-3x^2+10x-6=0\)

\(\Leftrightarrow x^2\left(5x-3\right)+2\left(5x-3\right)=0\Leftrightarrow\left(x^2+2\right)\left(5x-3\right)=0\)

Mà \(x^2+2>0\Rightarrow5x-3=0\Rightarrow x=\frac{3}{5}\)

\(x^2+y^2-2x+4y+5=0\)

\(\Leftrightarrow x^2+y^2-2x+4y+4+1=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

3)\(P\left(x\right)=x^2+y^2-2x+6y+12\)

\(P\left(x\right)=x^2+y^2-2x+6y+1+9+2\)

\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)

Vậy \(P\left(x\right)_{min}=2\Leftrightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

Bài làm

a) 2x2 - 12x + 18 + 2xy - 6y

= 2x2 - 6x - 6x + 18 + 2xy - 6y 

= ( 2xy + 2x2 - 6x ) - ( 6y + 6x - 18 )

= 2x( y + x - 3 ) - 6( y + x - 3 )

= ( 2x - 6 ) ( y + x - 3 )

# Học tốt #