tìm số nguyên dương n để n^2-2006 là số chính phương
a)tìm n để n^2+2006 là một số chính phương
b)Cho n là số nguyên tố lớn hơn 3. hỏi n^2+2006 là số nguyên tố hay hợp số.
a) n ko có giá trị nào
b) n^2 + 2006 là hợp số
A n ko co gia ch nao minh chi biet con a thoi
a) Không có giá trị nào thích hợp
b) n2 + 2006 là hợp số
a/Tìm n để n^2 + 2006 là 1 số chính phương
b/Cho n là số nguyên tố lớn hơn 3. Hỏi n^2 + 2006 là số nguyên tố hay hợp số
a)Cho n là số nguyên tố lớn hơn 3. Hỏi n^2+2006 là nguyên tố hay hợp số
b)Tìm n để n^2+2006 là một số chính phương
a) Tìm n để n^2+2006 là 1 số chính phương.
b)cho n là số nguyên tố lớn hơn 3. Hỏi n^2+2006 là số nguyên tố hay là hợp số.
a ) Đặt \(n^2+2006=a^2\left(a\in Z\right)\)
\(\Rightarrow2006=a^2-n^2=\left(a-n\right).\left(a+n\right)\)( 1 )
Mà ( a + n ) - ( a - n ) = 2n chia hết cho 2
=> a + n và a - n có cùng tính chẵn lẻ
TH1 : a + n và a - n cùng lẻ => ( a - n ) . ( a + n ) là số lẻ => trái với ( 1 )
TH2 : a + n và a -n cùng chẵn => ( a - n ) . ( a + n ) chia hết cho 4 => trái với 1
Vậy ko có n thỏa man để \(n^2+2006\)là số chính phương
b ) Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3
=> n = 3k + 1 hoặc n = 3k + 2 ( \(k\ne0\))
TH1 : n = 3k + 1 thì \(n^2+2006\)= \(\left(3k+1\right)^2\)+ 2006 \(=(9k^2+6k+2007)⋮3\)và lớn hơn 3
=> \(n^2+2006\)là hợp số
TH2 : n = 3k + 2 thì \(n^2+2006=\left(3k+2\right)^2=(9k^2+12k+2010)⋮3\)và lớn hơn 3
=> \(n^2+2006\)là hợp số
Vậy \(n^2+2006\)là hợp số
a, Tìm n để n^2 + 2006 là số chính phương
b, Cho n là số nguyên tố lớn hơn 3. Hỏi n^2 + 2006 là số nguyên tố hay hợp số
Đặt 2n + 2006 = a2 (a thuộc Z)
=> 2006 = a2 - n2 = (a - n)(a + n) (1)
Mà (a + n) - (a - n) = 2n chia hết cho 2
=> => a + n và a - n có cùng tính chẵn lẻ
+) TH1 : a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)
+) TH2 : a + n và a - n cùng chẵn => a(a - n)(a + n) chia hết cho 4, trái với (1)
Vậy không có n thỏa mãn n2 + 2006 là số chính phương
b) Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3
=> n = 3k + 1 hoặc n = 3k + 2 (k thuộc N*)
+) n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 6k + 2007 chia hết cho 3 và lớn hơn 3
=> n2 + 2006 là hợp số (1)
+) n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 12k + 201 chia hết cho 3 và lớn hơn 3
=> n2 + 2006 là hợp số (2)
Từ (1) và (2) thỏa mãn 2 điều kiện
=> n2 + 2006 là hợp số
mọi người mình hết âm thì may mắn đến hết năm
Tìm n để n2 +2006 là 1 số chính phương ?
b.Cho n là số nguyên tố >3. Hỏi n2 +2006 là số nguyên tố hay là hợp số
a. Tìm n để n2 + 2006 là một số chính phương.
b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay hợp số
a, tìm n để n2 + 2006 là số chính phương
b, Cho n là số nguyên tố lớn hơn 3. Hỏi n2+2006 là số nguyên tố hay hợp số
a.Đặt n2+2006=a2(a\(\in\)Z)
=>2006=a2-n2=(a-n)(a+n) (1)
Mà (a+n)-(a-n)=2n chia hết cho 2
=>a+n và a-n có cùng tính chẵn lẻ
+ TH1:a+n và a-n cùng lẻ => (a-n)(a+n) lẻ, trái với (1)
+ TH2 :a+n và a-n cùng chẵn => (a-n)(a+n) chia hết cho 4, trái với (1)
Vậy không có n thỏa mãn n2+2006 là số chính phương
b.Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3
=> n=3k+1 hoặc n=3k+2 (k\(\in\)N*)
+ n=3k+1 thì n2+2006=(3k+1)2+2006=9k2+6k+2007 chia hết cho 3 và lớn hơn 3
=>n2+2006 là hợp số
+ n=3k+2 thì n2+2006=(3k+2)2+2006=9k2+12k+2010 chia hết cho 3 và lớn hơn 3
=>n2+2006 là hợp số
Vậy n2+2006 là hợp số
`k^2-k+10`
`=(k-1/2)^2+9,75>9`
`k^2-k+10` là số chính phương nên đặt
`k^2-k+10=a^2(a>3,a in N)`
`<=>4k^2-4k+40=4a^2`
`<=>(2k-1)^2+39=4a^2`
`<=>(2k-1-2a)(2k-1+2a)=-39`
`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`
`2k+2a>6`
`=>2k+2a-1> 5`
`=>2k+2a-1=39,2k-2a-1=-1`
`=>2k+2a=40,2k-2a=0`
`=>a=k,4k=40`
`=>k=10`
Vậy `k=10` thì `k^2-k+10` là SCP
`+)2k+2a-1=13,2k-2a-1=-3`
`=>2k+2a=14,2k-2a=-2`
`=>k+a=7,k-a=-1`
`=>k=3`
Vậy `k=3` hoặc `k=10` thì ..........