Cho\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)và \(x^2+y^2=1\)
CMR:
a) \(bx^2=ay^2\)
b) \(\frac{x^{2010}}{a^{1005}}+\frac{y^{2010}}{b^{1005}}=\frac{2}{\left(a+b\right)^{1005}}\)
ai giải đúng và sớm nhất cho 1 tk vip 6 tháng ♫♥♪
Cho a,b là các số dương và x,y khác không thỏa mãn
\(\frac{x^2}{a^2.y^2}\)\(=\)\(\frac{1}{a^2.y^2+b^2.x^2}\)và \(x^2\)+\(y^2\)\(=1\)
CMR:\(\frac{x^{2010}}{a^{1005}}\)+\(\frac{y^{2010}}{b^{1005}}\)\(=\)\(\frac{2}{\left(a+b\right)^{1005}}\)
cho a,b,c,x,y thoa man x^2+y^2=1, x^4/a +y^4/b = 1/a+b
CMR x^02010/a^1005 +y^2010/b^1005 = 2/(a+b)^1005
a/ Cho x,y,z khác 0 thỏa mãn \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
tính B=\(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
b/ Cho a,b,c,d khác 0. Tính
\(T=x^{2011}+y^{2011}+z^{2011}+t^{2011}\) biết x,y,z,t thỏa mãn :
\(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+=d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)
Từ \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\left(1\right)\)
*)Xét \(x+y+z\ne0\left(2\right)\). Từ (1) và (2)
\(\Rightarrow x=y=z\). Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=2\cdot2\cdot2=8\)
*)Xét \(x+y+z=0\)\(\Rightarrow\left\{\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)
Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=\frac{-z}{y}\cdot\frac{-x}{z}\cdot\frac{-y}{x}=-1\)
a)
Ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\left\{\begin{matrix}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}y+z-x=x\\z+x-y=y\\x+y-z=z\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}y+z=2x\\z+x=2y\\x+y=2z\end{matrix}\right.\) (1)
Ta có \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
\(\Rightarrow B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)
Thế (1) vào biểu thức B
\(\Rightarrow B=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}\)
\(\Rightarrow B=2.2.2=8\)
Vậy biểu thức \(B=8\)
1. Cho \(\left(x+\sqrt{x^3+1}\right)\left(y+\sqrt{y^3+1}\right)=1.\)
Tính giá trị của biểu thức: \(A=x^{2009}+y^{2009}\)
2. Cho a,b,c là các cạnh của tam giác. CMR: \(a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\le a^3+b^3+c^3+3abc\)
3. Giải phương trình sau: \(\sqrt{2\sqrt{3}-3}=\sqrt{x\sqrt{3}-\sqrt{y\sqrt{3}}}\)với \(x;y\in R\)
4. Trên đường thẳng \(y=x+1\)những điể có tọa độ thỏa mãn đẳng thức \(y^2-3y\sqrt{x}+2x=0\)
5.Cho 2 số dương x;y thỏa mãn \(x+y=\frac{2011}{2012}\). Tính MIN của \(S=\frac{2010}{x}+\frac{1}{2010y}+\frac{2010}{1005}\)
E hổng biết cách này có đúng ko nữa:((
5
Ta có:\(S=\frac{2010}{x}+\frac{1}{2010y}+\frac{1010}{1005}\ge2\sqrt{\frac{2010}{x}\cdot\frac{1}{2010y}}+\frac{1010}{1005}\left(AM-GM\right)\)
\(=\frac{2}{\sqrt{xy}}+\frac{2010}{1005}\ge\frac{2}{\frac{x+y}{2}}+2=4\)( AM-GM ngược dấu )
Dấu "=" xảy ra khi \(x=y=\frac{2010}{4024}\)
Cho : \(\dfrac{1}{a^2y^2+x^2b^2}\)=\(\dfrac{x^2}{a^2y^2}\) và \(x^2\)+\(y^2\) = 1
CMR : \(\dfrac{x^{2010}}{a^{1005}}\) + \(\dfrac{y^{2010}}{b^{1005}}\) = \(\dfrac{2}{\left(a+b\right)^{1005}}\)
8Cho \(\frac{x}{a}+\frac{y}{b}=1\)và \(\frac{xy}{ab}=-2\)Tính \(\frac{x^3}{a^3}+\frac{y^3}{b^3}\)
10Cho \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)cà x^2+y^2=1 Chứng minh rằng
a) bx2 =ay2
b)\(\frac{x^{2008}}{a^{1004}}+\frac{y^{2008}}{b^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)
25 Cho x,y,z khác 0 và a,b,c dương thỏa mãn ax+by+cz=0 cà a+b+c = 2007
Tính giá trị bieu thức P=\(\frac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)
10. a)
\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\Leftrightarrow\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)
\(\Leftrightarrow\left(a+b\right)\left(x^4+y^4\right)=ab\left(x^2+y^2\right)^2\Leftrightarrow\left(bx^2-ay^2\right)^2=0\Leftrightarrow bx^2=ay^2\)
b) Từ \(ay^2=bx^2\Rightarrow\frac{y^2}{b}=\frac{x^2}{a}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)
\(\Rightarrow\frac{x^{2008}}{a^{1004}}=\frac{1}{\left(a+b\right)^{1004}}\); \(\frac{y^{2008}}{b^{1004}}=\frac{1}{\left(a+b\right)^{1004}}\)
\(\Rightarrow\frac{x^{2008}}{a^{1004}}+\frac{y^{2008}}{b^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)
25. Ta có \(\left(ax+by+cz\right)^2=0\Leftrightarrow a^2x^2+b^2y^2+c^2z^2=-2\left(abxy+bcyz+acxz\right)\)
Xét mẫu số của P : \(bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2=bc\left(y^2-2yz+z^2\right)+ac\left(x^2-2xz+z^2\right)+ab\left(x^2-2xy+y^2\right)\)
\(=y^2bc-2bcyz+bcz^2+acx^2-2xzac+acz^2+abx^2-2abxy+aby^2\)
\(=y^2bc+bcz^2+acx^2+acz^2+abx^2+aby^2-2\left(abxy+xzac+bcyz\right)\)
\(=y^2bc+bcz^2+acx^2+acz^2+abx^2+aby^2+a^2x^2+b^2y^2+c^2z^2\)
\(=c\left(ax^2+by^2+cz^2\right)+b\left(ax^2+by^2+cz^2\right)+a\left(ax^2+by^2+cz^2\right)=\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)\)
\(\Rightarrow P=\frac{ax^2+by^2+cz^2}{\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)}=\frac{1}{a+b+c}=\frac{1}{2007}\)
8. \(\frac{x^3}{a^3}+\frac{y^3}{b^3}=\left(\frac{x}{a}+\frac{y}{b}\right)^3-3.\frac{xy}{ab}\left(\frac{x}{a}+\frac{y}{b}\right)=1^3-3.\left(-2\right).1=7\)
8. \(\frac{x^3}{a^3}+\frac{y^3}{b^3}=\left(\frac{x}{a}+\frac{y}{b}\right)^3-3.\frac{xy}{ab}\left(\frac{x}{a}+\frac{y}{b}\right)=1^3-3.\left(-2\right).1=7\)
Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng:
a.\(\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\) b.\(\frac{a^{1005}+b^{1005}}{c^{1005}+d^{1005}}=\frac{\left(a+b\right)^{1005}}{\left(c+d\right)^{1005}}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\\ =>\orbr{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(Taco:\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\)
\(=>\left(bk+2dk\right).\left(b+d\right)=\left(bk+dk\right).\left(b+2d\right)\)
\(=>\frac{bk+2dk}{bk+dk}=\frac{b+2d}{b+d}\)
\(=>\frac{k.\left(b+2d\right)}{k.\left(b+d\right)}=\frac{b+2d}{b+d}\)
\(=>\frac{b+2d}{b+d}=\frac{b+2d}{b+d}\)(ĐPCM)
, Chờ tí mk làm câu b
Ta có :\(\frac{a}{b}=\frac{c}{d}\)
\(\implies\)\(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\left(1\right)\) \(\implies\) \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\left(2\right)\)
Từ (1);(2)\(\implies\) \(\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\)
\(\implies\) \(\left(a+2c\right).\left(b+d\right)=\left(b+2d\right).\left(a+c\right)\)
P/S : ko chắc
Áp dụng tc của dãy tỉ số bằng nhau có :
\(\frac{a}{b}=\frac{c}{d}=\frac{a^{1005}+b^{1005}}{c^{1005}+d^{1005}}=\frac{\left(a+b\right)^{1005}}{\left(c+d\right)^{1005}}\)(ĐPCM)
Đánh máy ẩu v :D
cho \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b};\) \(x^2+y^2=1\)cmr
a.\(bx^2=ay^2\)
b.\(\frac{x^{2018}}{a^{1004}}+\frac{y^{2018}}{b^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)
a) Từ đề bài \(\Rightarrow\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\) \(\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{\left(x^2+y^2\right)^2}{a+b}\)
\(\Leftrightarrow\left(x^4b+y^4a\right)\left(a+b\right)-ab\left(x^2+y^2\right)^2=0\)
\(\Leftrightarrow b^2x^4-2abx^2y^2+a^2y^4=0\)
\(\Leftrightarrow\left(bx^2-ay^2\right)^2=0\) \(\Rightarrow bx^2=ay^2\) (ĐPCM)
b) Từ a \(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}\) Áp dụng DTSBN ta có :
\(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}\) hay \(\frac{x^2}{a}=\frac{y^2}{b}=\frac{1}{a+b}\)
\(\Rightarrow\frac{x^{2018}}{a^{1004}}=\frac{y^{2018}}{b^{1004}}=\frac{1}{\left(a+b\right)^{1004}}\) \(\Rightarrow\frac{x^{2018}}{a^{1004}}+\frac{y^{2018}}{b^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\) (ĐPCM)
x2 phần a2y2=1 phần a2y2 + b2x2 và x2+y2=1 . CM x2010 phần a1005 + y2010 phần b1005 =2 phần (a+b)1005