tìm tất cả các số nguyên tố p sao cho tổng các ước của p2 là số chính phương.
Tìm tất cả các số nguyên tố P để tổng các ước của số P4 là số chính phương
Câu hỏi của tran gia nhat tien - Toán lớp 8 - Học trực tuyến OLM
Tìm tất cả các số nguyên tố p để tổng các ước số của p4 là một số chính phương
tìm tất cả các số nguyên tố p để tổng ước của p4 là 1 số chính phương
Số p4 có 5 ước số tự nhiên là 1 , p, p2 , p3 , p4
Ta có : 1 + p + p2 + p3 + p4 = n2 (n \(\in\) N)
Suy ra : 4n2 = 4p4 + 4p3 + 4p2 + 4p + 4 > 4p4 + 4p3 + p2 = (2p2 + p)2
Và 4n2 < 4p4 + p2 + 4 + 4p3 + 8p2 + 4p = (2p2 + p + 2)2.
Vậy : (2p2 + p)2 < (2n)2 < (2p2 + p + 2)2.
Suy ra :(2n)2 = (2p2 + p + 2)2 = 4p4 + 4p3 +5p2 + 2p + 1
vậy 4p4 + 4p3 +5p2 + 2p + 1 = 4p4 + 4p3 +4p2 +4p + 4 (vì cùng bằng 4n2 )
=> p2 - 2p - 3 = 0 => (p + 1) (p - 3) = 0
do p > 1 => p - 3 = 0 => p = 3
Tìm tất cả số nguyên tố p lẻ sao cho 2p4 - p2 + 16 là số chính phương
Với \(p=2\) thì \(2p^4-p^2+16=44\) không là số chính phương.
Với \(p=3\) thì \(2p^4-p^2+16=169\) là số chính phương.
Với \(p\ge5\), suy ra \(p⋮̸3\). Dễ dàng kiểm chứng \(p^2\equiv1\left(mod3\right)\) còn \(2p^4\equiv2\left(mod3\right)\). Lại có \(16\equiv1\left(mod3\right)\) nên \(2p^4-p^2+16\equiv2\left(mod3\right)\), do đó \(2p^4-p^2+16\) không thể là số chính phương.
Như vậy, số nguyên tố \(p\) duy nhất thỏa mãn ycbt là \(p=3\)
Mình quên mất là không cần xét \(p=2\) đâu vì đề bài cho \(p\) nguyên tố lẻ.
1)Có bao nhiêu ước là số chính phương của số
\(A=1^9.2^8.3^7.4^6.5^5.6^4.7^3.8^29^1\)
2)Tìm tất cả các số tự nhiên n sao cho các số n+50 va n-50 là số chính phương.
3)Tìm tất cả các số nguyên tố p sao cho 17p+1 là số chính phương.
4)a)Chứng minh rằng một số nguyên biểu diễn dưới dạng hai số chính phương khi và chỉ khi nó là một số lẻ hoặc chia hết cho 4.
b)Có bao nhiêu số tự nhiên từ 1 đến 2016 là hiệu của 2 số chính phương
2 Tìm một số chính phương có 4 chữ số sao cho khi viết 4 chữ số đó theo thứ tự ngược lại ta cũng đc 1 số chính phương và số chính phương này là bội của số chính phương ta cần tìn3 Tìm số nguyên tố p sao cho tống tất cả các ước dương của p 4 là 1 số chính phươngLÀM NHANH GIÚM NHA MẤY BẠN. AI LÀM NHANH, ĐÚNG NHẤT SẼ CÓ LIKE PLEASE HELP ME
Gọi số phải tìm là \(\overline{abcd}=n^2\)
nên số viết theo thứ tự ngược lại là \(\overline{dcba}=m^2\) với \(m,n\inℕ\)và m>n
Do \(1000\le\overline{abcd},\overline{dcba}\le9999\) nên \(1000\le m^2,n^2\le9999\)
Mà \(m^2,n^2\)là số chính phương và \(m,n\inℕ\)
\(\Rightarrow1024\le m^2,n^2\le9801\)
\(\Rightarrow32\le m,n\le99\)
Do \(\overline{dcba}⋮\overline{abcd}\Rightarrow m^2⋮n^2\Rightarrow m⋮n\)
Đặt \(m=kn\forall k\inℕ^∗,k\ge2\Rightarrow\overline{dcba}=k^2.\overline{abcd}\)
Ta có: \(m=kn\le99,n\ge32\)
=> 32.k.n ≤ 99n => k ≤ 99/32 => k≤ 3 \(\Rightarrow32kn\le99n\Rightarrow k\le\frac{99}{32}\Rightarrow k\le3\)
Như vậy: \(k\in\left\{2;3\right\}\)
+Nếu k = 2 thì: dcba = 4.abcd
Theo a € {1,4,6,9}: nếu a=4 thì: dcb4 = 4bcd . 4 > 9999 => a chỉ có thể là 1.
Khi đó: dcb1 = 4. 1bcd ≤ 4.1999 = 7996 => d ≤ 7. Kết hợp với đc: d= 4 hoặc d =6
Với d=4: <=> 390b+15=60c <=> 26b+1=4c (vô lý vì vế trái chẵn còn vế phải lẻ)
Với d = 6: <=> 390b+23 = 60c+2000 (cũng vô lý)
+Như vậy: k =3. Khi đó: dcba = 9.abcd
a chỉ có thể là 1 và d = 9. Khi đó: <=> 9cb1 = 9.1bc9
<=> 10c = 800b+80 <=> c = 80b+8
Điều này chỉ có thể xảy ra <=> b=0 và c=8
KL: số phải tìm là: 1089
Tìm tất cả các bộ ba số nguyên tố liên tiếp sao cho tổng các bình phương của ba số này cũng là số nguyên tố?
Tìm tất cả các cặp số a,b sao cho tổng của chúng là 10 và a,b nguyên tố cùng nhau.
b, Có hay không số nguyên tố mà tổng các ước của nó bằng : 1,18 ; 2,19
xét 1 trong a hoặc b là số nguyên tố lẻ thì 0<a,b<10.
+ Các số nguyên tố thõa mãn là 3;5;7.
=> Số còn lại lần lượt là 7;5;3
=> Chỉ có các số nguyên tố 3,7,9 thõa mãn.
. Nếu 1 trong 2 a,b là số chẵn ( = 2,4,6,8) thì hai số luôn có ước 1, 2, chính nó,..... không nguyên tố cùng nhau.
+ Các số lẻ còn lại chỉ còn số 9 thõa mãn.
=> Số còn lại bằng 1
Bạn tự xét các cặp a,b nha
Uk mình cũng không phải người ra đề nên chịu chỉ hỏi thay