Chứng minh rằng nếu P nguyên tố và a không chia hết cho P thì aP-1 đồng dư với 1( mod P )
chứng minh rằng nếu (a,30)=1 thì a4+59 chia hết cho 60
Chứng minh rằng nếu (a,42)=1 thì a6 đồng dư 1(mod 168)
Chứng minh rằng nếu số nguyên tố p không chia hết số nguyên dương a thì p chia hết số a(p-1) -1
Định lí Fermat - chứng minh bằng đồng dư thức
CHỨNG MINH RẰNG:
a) Nếu a đồng dư với 1 ( mod 2) thì a2 đồng dư với 1 ( mod 8)
b) Nếu a đồng dư với 1 ( mod 3) thì a2 đồng dư với 1 ( mod 9)
Chứng minh rằng x không chia hết cho 3 thì x2 đồng dư với 1 (mod 3)
Xét : x^2-1 = (x-1).(x+1)
x ko chia hết cho 3 nên x chia 3 dư 1 hoặc 2
Nếu x chia 3 dư 1 => x-1 chia hết cho 3 => x^2-1 chia hết cho 3
Nếu x chia 3 dư 2 => x+1 chia hết cho 3 => x^2-1 chia hết cho 3
Vậy x^2-1 chia hết cho 3 với mọi x ko chia hết cho 3 , x thuộc Z
=> với mọi x ko chia hết cho 3 , x thuộc Z thì x^2 đồng dư vơi 1 (mod 3)
Tk mk nha
1 . Chứng minh rằng nếu a5 chia hết cho 5 thì a chia hết cho 5 .
2 . Chứng minh rằng nếu tích 5 số bằng 1 thì tổng của chúng không thể bằng 0 .
3 . Chứng minh rằng tồn tại một giá trị n thuộc N* sao cho n2 + n + 1 không phải lá số nguyên tố .
4 Chứng minh rằng nếu n là số nguyên tố lớn hơn 3 thì n2 - 1 chia hết cho 24 .
1.Áp dụng định lý Fermat nhỏ.
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
Cách 2
\(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
Do a nguyên nên a có 5 dạng:\(5k;5k+1;5k+2;5k+3;5k+4\)
Nếu \(a=5k\Rightarrow a^5-a=5k\left(a-1\right)\left(a+1\right)\left(a^2+1\right)⋮5\)
Nếu \(a=5k+1\Rightarrow a^5-a=a\cdot5k\left(a+1\right)\left(a^2+1\right)⋮5\)
Nếu \(a=5k+2\Rightarrow a^5-a=a\left(a-1\right)\left(a+1\right)\left(25k^2+20k+5\right)⋮5\)
Nếu \(a=5k+3\Rightarrow a^5-a=a\left(a-1\right)\left(a+1\right)\left(25k^2+30k+10\right)⋮5\)
Nếu \(a=5k+4\Rightarrow a^5-a=a\left(a-1\right)\left(5k+5\right)\left(a^2+1\right)⋮5\)
Vậy \(a^5-a⋮5\)
Với mỗi số nguyên dương n, với n > 1.Giả sử Q là tích của tất cả các số nguyên dương nhỏ hơn n và nguyên tố cùng nhau với n. Chứng minh rằng Q đồng dư 1 mod n nếu n lẻ và có ít nhất 2 ước nguyên tố.
giải thích rõ hộ em với ạ em vnx chưa hiểu ạ;-;
Với mỗi số nguyên dương n, với n > 1.Giả sử Q là tích của tất cả các số nguyên dương nhỏ hơn n và nguyên tố cùng nhau với n. Chứng minh rằng Q đồng dư 1 mod n nếu n lẻ và có ít nhất 2 ước nguyên tố.
chứng minh rằng :
Nếu a đồng dư với 1 (mod 2) thì a2 đồng dư với 1(mod 8)
Bạn tham khảo lời giải tại đây:
Câu hỏi của Angela jolie - Toán lớp 9 | Học trực tuyến
chứng minh rằng nếu x không chia hết cho 3 thi x2 đồng dư với 1 (mod 3)