Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Nguyễn Tú Anh
Xem chi tiết
Nguyễn Linh Chi
11 tháng 5 2020 lúc 22:23

Đặt: x - y = a ; 3x + y - z = b ; -4x + z = c 

Ta có: a + b +  c  = x - y + 3x + y - z - 4x + z = 0 

Khi đó: \(\left(x-y\right)^3+\left(3x+y-z\right)^3+\left(-4x+z\right)^3\)

\(a^3+b^3+c^3\)

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc+ac\right)+3abc\)

\(0.\left(a^2+b^2+c^2-ab-bc+ac\right)+3abc\)

\(3abc\)

\(3\left(x-y\right)\left(3x+y-z\right)\left(-4x+z\right)\)

Khách vãng lai đã xóa
Trương Nguyễn Tú Anh
12 tháng 5 2020 lúc 19:42

cảm ơn ạ 

Khách vãng lai đã xóa
Đậu Bảo Khanh
15 tháng 5 2020 lúc 14:37

tôi mới học lớp 2

Khách vãng lai đã xóa
Thanh Tu Nguyen
Xem chi tiết
Scarlett Ohara
Xem chi tiết
....
14 tháng 7 2021 lúc 15:36

undefined

Nguyễn Công Minh Hoàng
Xem chi tiết
zZz Cool Kid_new zZz
4 tháng 8 2019 lúc 14:04

Đặt \(x+y-z=a;x-y+z=b;y+z-x=c\)

Ta có:\(A=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(A=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)

\(A=\left(a+b\right)^3+3\left(a+b\right)\cdot c\cdot\left(a+b+c\right)+c^3-a^3-b^3-c^3\)

\(A=a^3+b^3+3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)+c^3-a^3-b^3-c^3\)

\(A=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(A=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Hay \(A=3\cdot2x\cdot2y\cdot2z\)

\(A=24xyz\)

Huỳnh Kim Bích Ngọc
Xem chi tiết
Huỳnh Kim Bích Ngọc
Xem chi tiết
Đen đủi mất cái nik
15 tháng 8 2017 lúc 8:20

Đặt y-z=-[(x-y)+(z-x)]

Thay vào rồi cm nha bạn

Huỳnh Kim Bích Ngọc
Xem chi tiết
trần thị thùy phương
Xem chi tiết
Cô Gái Mùa Đông
Xem chi tiết