C = 1/11.13+1/13.15+1/15.17+...+1/2015.2017
Tính :
\(C=\frac{1}{11.13}+\frac{1}{13.15}+\frac{1}{15.17}+...+\frac{1}{2015.2017}\)
\(\frac{1}{11.13}+\frac{1}{13.15}+\frac{1}{15.17}+........+\frac{1}{19.21}\)
Gọi dãy trên là A
\(\Leftrightarrow2A=\frac{2}{11\cdot13}+\frac{2}{13\cdot15}+...+\frac{2}{19\cdot21}\)
\(\Leftrightarrow2A=\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{19}-\frac{1}{21}\)
\(\Leftrightarrow2A=\frac{1}{11}-\frac{1}{21}+0+...+0\)
\(\Leftrightarrow2A=\frac{10}{231}\)
\(\Leftrightarrow A=\frac{5}{231}\)
Tim x
A,x - ( 20 / 11.13+20/13.15+20/15.17+...+20/53.55)=3/11
B,1/21+1/28+1/36+...+2/x.(x+1)=2/9
a) \(x-\left(\frac{20}{11.13}+\frac{20}{13.15}+\frac{20}{15.17}+...+\frac{20}{53.55}\right)=\frac{3}{11}\)
\(x-\frac{20}{2}.\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-10.\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-10.\frac{4}{55}=\frac{3}{11}\)
\(x-\frac{8}{11}=\frac{3}{11}\)
x = 1
b) \(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\) ( nhân cho cả tử và mẫu của các số hạng trên ( ngoại trừ 2/x.(x+1) ) là 2)
\(\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)
\(2.\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{9}\)
\(2.\left(\frac{1}{6}-\frac{1}{x+1}\right)=\frac{2}{9}\)
\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{x+1}=\frac{1}{18}\)
=> x + 1 = 18
x = 17
\(a,x-\left(\frac{20}{11.13}+\frac{20}{13.15}+...+\frac{20}{53.55}\right)=\frac{3}{11}\)
\(\Rightarrow x-10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)
\(\Rightarrow x-10\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)
\(\Rightarrow x-\frac{8}{11}=\frac{3}{11}\)
\(\Rightarrow x=1\)
\(b,\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\frac{2}{42}+\frac{2}{56}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(2\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{18}=\frac{1}{x+1}\)
\(\Rightarrow x+1=18\Leftrightarrow x=17\)
1.Tìm X thuộc N
a. x-20/11.13-20/13.15-20/15.17-...-20/53.55=3/11
b. 1/21+1/28+1/36+...+2/x.(x+1)=2/9
11.13+13.15+15.17+............+31.33
a) Tìm x biết x- 2/11.13 - 2/13.15 - 2/15.17-...- 2/55.57=4/3
b) Chứng tỏ rằng: 1/2^2 + 1/3^2 + 1/4^2+ ... + 1/100^2 < 1
a) Tìm x :
x - 2/11.13 - 2/13.15 - 2/15.17 - ... - 2/55.57= 4/3
b) Chứng tỏ rằng : 1/ 2^2 + 1/3^2 + 1/4^2 + ... + 1/100^2 <1
a.x-2/11.13-2/13.15-2/15.17-...-2/55.57=4/3
=>x-(2/11.13+2/13.15+2/15.17+...+2/55.57)=4/3
=>x-(1/11-1/13+1/13-1/15+...+1/55-1/57)=4/3
=>x-(1/11-1/57)=4/3
=>x-46/627=4/3
=>x=4/3+46/627=294/209
a) x - 20/11.13 - 20/13.15 - 20/15.17 -...- 20/53.55 = 3/11
b) 1/21 + 1/28 + 1/36+...+ 2/x(x+1) = 2/9
Giúp với. Khó quá!! cơ hội kiếm like :))
\(x-\frac{20}{11.13}-\frac{20}{23.15}-....-\frac{20}{53.55}=\frac{3}{11}\)
\(x-\left(\frac{20}{11.13}+\frac{20}{13.15}+....+\frac{20}{53.55}\right)=\frac{3}{11}\)
\(x-10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-10\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-\frac{8}{11}=\frac{3}{11}\)
=> \(x=\frac{3}{11}+\frac{8}{11}=1\)
2/11.13 +2/13.15+2/15.17 +...+2/53.55
Gọi A = 2/11.13 +2/13.15+2/15.17 +...+2/53.55
=> A = 1/11-1/13+1/13-1/15+...+1/53-1/55
=> A = 1/11-1/55
=> A = 4/55
Đúng 100%
=1/11-1/13+1/13-1/15+1/15-1/17+...+1/53-1/55
=1/11-1/55
=5/55-1/55
=4/55