chứng minh nếu a/b =c/d thì :
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
60. Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
đặt \(\frac{a}{b}=\frac{c}{d}=k\)=> a=bk c=dk
ta có : \(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)(1)
\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2}{d^2}\)(2)
từ (1:2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
Cái này dựa trên mạng dác dặt bút làm lắm nha
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=b.k;c=d.k\)
Ta có \(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\left(1\right)\)
Ta lại có \(\frac{a^2+b^2}{c^2+d^2}=\frac{k^2.b^2+b^2}{k^2.d^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\left(2\right)\)
Từ \(\left(1\right)và\left(2\right)\)ta được
\(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)
\(\frac{a}{b}=\frac{c}{d}=>\frac{a^2}{b^2}=\frac{c^2}{d^2}\)\(=>\frac{a^2}{c^2}=\frac{b^2}{d^2}.\) . .Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\).Xin lỗi mình chưa nghĩ ra tiếp
Chào các bạn, hôm nay mình có một bài toán khá khó muốn nhờ các bạn giải giúp
a) Chứng minh rằng nếu\(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
b) Cho \(\frac{a}{b}=\frac{c}{d}\). Hãy chứng minh: \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\)(1)
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(2)
Từ (1) và (2), ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{\left[b.\left(k-1\right)\right]^2}{\left[d.\left(k-1\right)\right]^2}=\frac{b^2}{d^2}\)(1)
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(2)
Từ (1) và (2), ta có: \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
a) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)
mà \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
b) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{a-b}{c-d}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
mà \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)
\(\Rightarrow\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
Chứng minh rằng \(\frac{a}{b}=\frac{c}{d}\) thì \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=>a=b.k
c=d.k
ta có Vế Phải : \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(b.k\right)^2+b^2}{\left(d.k\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\)
Vế Trái :\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\)
vì \(\frac{b^2}{d^2}=\frac{b^2}{d^2}\)
=>VP=VT
=>\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> a=b.k; c=d.k
Suy ra:
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(b.k\right)^2+b^2}{\left(d.k\right)^2+d^2}=\frac{b^2}{d^2}\) (1)
\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2}{d^2}\) (2)
Từ (1) và (2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
Chúc bạn học tốt!
nếu a/b=c/d . chứng minh \(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\)
Bài 1,\(\frac{a+5}{a-5}=\frac{b+6}{b-6}\). Chứng minh rằng: \(\frac{a}{b}=\frac{5}{6}\)
Bài 3, Bốn số a, b,c,d thỏa mãn điều kiện:\(b^2=ac;c^2=bd.\)Chứng minh:\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Bài 2, Chứng minh rằng nếu: \(\frac{a}{b}=\frac{c}{d}\) thì \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
đề nào và mình ghi sai thứ tự bài
bài 1 thiếu cho ở đàu
1) Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh: \(\frac{a}{3a+b}=\frac{c}{3c+d}\)
2) Cho\(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
a) \(\frac{a^2-d^2}{c^2-d2}=\frac{ab}{cd}\)
b) \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
1, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\Rightarrow\frac{a}{c}=\frac{3a+b}{3c+d}\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)
2, a, Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{ab}{cd}\)
\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{b}{d}\cdot\frac{b}{d}\Rightarrow\frac{ab}{cd}=\frac{b^2}{d^2}\)
\(\Rightarrow\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)
b, Ta có: \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a-b}{c-d}\cdot\frac{a-b}{c-d}\Rightarrow\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
C/minh nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
Các bn giải theo cách đặt k giùm,nếu ko thì cách nào cũng đc.
có nhiều cách giải,cách đặt k:
a/b=c/d=k thì a=bk;c=dk
thay vào:
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2\left(k+1\right)}{d^2\left(k+1\right)}=\frac{b^2}{d^2}\) (1)
ab/cd=..... (2)
từ (1) và (2) =>đpcm
CMR: nếu\(\frac{a}{b}=\frac{c}{d}thì\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
CMR: (chứng minh rằng) nếu \(\frac{a}{b}\)=\(\frac{c}{d}\)thì \(\frac{a^2+b^2}{c^2+d^2}\)=\(\frac{ab}{cd}\)
a/b=c/d
=>a/c=b/d
=>a/c.a/c=b/d.a/c=b/d.b/d
=>ab/cd=a2/c2=b2/d2=(a2+b2)/(c2+d2)
vậy ...