Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hạ Tử Nhi
Xem chi tiết
Nguyễn Thị Kim Hoàng
Xem chi tiết
thinh
13 tháng 8 2016 lúc 20:00

ko bik

Nguyễn Thị Kim Hoàng
14 tháng 8 2016 lúc 13:01

tôi biết ông là ai,đừng có mà giỡn như vậy!

lê thị thu huyền
6 tháng 6 2017 lúc 9:57

Phân tích đa thức thành nhân tử hả?

1) 8x^3-16x^2y+8xy^2

=8x(x^2-2xy+y^2)

=8x(x-y)^2

2) 3x^2+6xy+3y^2-3z^2

=3(x^2+2xy+y^2-z^2)

=3[(x+y)^2-z^2]

=3(x+y+z)(x+y-z)

Linh
Xem chi tiết
thành piccolo
Xem chi tiết
Vy trần
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 9 2021 lúc 18:01

\(a,-2xy^2\left(x^3y-2x^2y^2+5xy^3\right)\\ =-2x^4y^3+4x^3y^4-10x^2y^5\\ b,\left(-2x\right)\left(x^3-3x^2-x+1\right)\\ =-2x^4+6x^3+2x^2-2x\\ c,\left(-10x^3+\dfrac{2}{5}y-\dfrac{1}{3}z\right)\left(-\dfrac{1}{2}zy\right)\\ =5x^3yz-\dfrac{1}{5}y^2z+\dfrac{1}{6}yz^2\\ d,3x^2\left(2x^3-x+5\right)=6x^5-3x^3+15x^2\\ e,\left(4xy+3y-5x\right)x^2y=4x^3y^2+3x^2y^2-5x^3y\\ f,\left(3x^2y-6xy+9x\right)\left(-\dfrac{4}{3}xy\right)\\ =-4x^3y^2+8x^2y^2-12x^2y\)

Lê Hoàng Tú Anh
Xem chi tiết
Mimi
2 tháng 7 2016 lúc 11:42

1) \(x^3-x+y^3-y\)

\(=\left(x^3+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)

2)\(3x^2+6xy+3y^2-3z^2=3\left(x^2+2xy+y^2-z^2\right)\)

\(=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y-x\right)\left(x+y+z\right)\)

3)\(x^3+y^3-3x-3y=\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2-3\right)\)

Đỗ Thanh Tùng
2 tháng 7 2016 lúc 10:51

\(1.x^3+y^3-x-y=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)

2.\(3\left(x^2+6xy+y^2-z^2\right)=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y+z\right)\left(x+y-z\right)\)

3.\(\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2-3\right)\)

cho mình nha

Họ Và Tên
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 1 2022 lúc 19:27

\(x^3=3y^2-3y+1=3\left(y-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)

\(\Rightarrow x\ge\dfrac{1}{\sqrt[3]{4}}>\dfrac{1}{2}\)

Tương tự ta có \(y;z>\dfrac{1}{2}\)

\(\Rightarrow x+y-1>0;y+z-1>0;z+x-1>0\)

TH1: \(x\ge y\Rightarrow x^3\ge y^3\Rightarrow3y^2-3y+1\ge3z^2-3z+1\)

\(\Rightarrow y^2-z^2-y+z\ge0\Rightarrow\left(y-z\right)\left(y+z+1\right)\ge0\)

\(\Rightarrow y-z\ge0\Rightarrow y\ge z\Rightarrow x\ge z\) (1)

Cũng do \(y\ge z\Rightarrow y^3\ge z^3\)

\(\Rightarrow3z^2-3z+1\ge3x^2-3x+1\Rightarrow z^2-x^2-z+x\ge0\)

\(\Rightarrow\left(z-x\right)\left(z+x+1\right)\ge0\Rightarrow z\ge x\) (2)

Từ (1);(2) \(\Rightarrow x=y=z\)

TH2: \(x\le y\), hoàn toàn tương tự ta cũng chứng minh được \(x=y=z\)

Thay vào hệ ban đầu:

\(\left\{{}\begin{matrix}x^3-3x^2+3x=1\\y^3-3y^2+3y=1\\z^3-3z^2+3z=1\end{matrix}\right.\) \(\Rightarrow x=y=z=1\)

Đinh Diệu Linh
Xem chi tiết
Cold Wind
14 tháng 11 2016 lúc 18:52

a) Nhóm x^2 và y^2  ; x và y 

b) Nhóm 3 hạng tử đầu lại vs nhau . Sau cùng xuất  hiện nhân tử chung là 3

c) Nhóm 2 hạng tử đầu với nhau. ba hạng tử còn lại với nhau . 

d) .....

Anh Nguyễn Phan
14 tháng 11 2016 lúc 22:21

D,ghép đầu với cuối là hằng dẳng thức 2 cái giữa với nhau là nhân tử chung là 3x

Nguyễn Hoài Linh
Xem chi tiết
Trần Đức Thắng
4 tháng 8 2015 lúc 22:16

P(x,y) = x^3 - 3x^2 + 3x^2y + 3xy^2 + y^3 - 3y^2 - 6xy + 3x + 3y

         = ( x^3 + 3x^2y + 3xy^2 + y^3 ) - ( 3x^2 + 3y^2 + 6xy ) + ( 3x + 3y)

         = ( x+  y)^3 - 3 ( x^2 + 2xy + y^2) + 3 ( x+  y)

         = ( x+  y)^3 - 3 ( x+ y)^2 + 3(x +y)

Thay x+  y = 101 ta có :

        = 101^3 - 3.101^2 + 3.101

         = 101 . ( 101^2 - 3.101 + 3 )

         = 101 .9901

        =  1000001

OoO nhóc ngu ngơ OoO dễ...
24 tháng 10 2017 lúc 19:44

1000001

chắc chắn 100%