CMR 11^n+2 + 12^2n+1 chia hết cho 6
1. CMR : A = 13!-11! chia hết cho 155
2. Tìm n thuộc N sao cho (3n+1) chia hết cho (11+ 2n)
3. CMR C = 11^9 + 11^8 + 11^7 +...+11^0 chia hết cho 5
4. Tìm số tn chia 8 dư 3, chia 125 dư 12
Ta có :
A = 13! - 11! = 11! . 12 . 13 - 11! = 11! . (12 . 13 - 1) = 11! . 155 chia hết cho 155
CMR
a) 7.5^2n + 12.6^n chia hết cho 19 ( n thuộc N)
b) 11^n+2 +12^2n+1 chia hết cho 133 ( n thuộc N)
a, 7 . 52n + 12 . 6n
= 7 . (52)n - 7 . 6n + 19 . 6n
= 7 . (25n - 6n) + 19 . 6n
= 7 . (25 - 6) . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n
= 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n
Vì 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) ⋮ 19 và 19 . 6n ⋮ 19
=> 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n ⋮ 19
=> 7 . 52n + 12 . 6n ⋮ 19
b, 11n + 2 + 122n + 1
= 121 . 11n + 144n . 12
= 133 . 11n - 12 . 11n + 144n . 12
= 133 . 11n + 12(144n - 11n)
= 133 . 11n + 12 . (144 - 11) . (144n - 1 - 144n - 2 . 11 + .... - 11n)
= 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n)
Vì 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133 và 133 . 11n ⋮ 133
=> 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133
=> 11n + 2 + 122n + 1 ⋮ 133
Bài làm :
a) 7 . 52n + 12 . 6n
= 7 . (52)n - 7 . 6n + 19 . 6n
= 7 . (25n - 6n) + 19 . 6n
= 7 . (25 - 6) . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n
= 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n
Vì 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) ⋮ 19 và 19 . 6n ⋮ 19
=> 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n ⋮ 19
=> Điều phải chứng minh
b) 11n + 2 + 122n + 1
= 121 . 11n + 144n . 12
= 133 . 11n - 12 . 11n + 144n . 12
= 133 . 11n + 12(144n - 11n)
= 133 . 11n + 12 . (144 - 11) . (144n - 1 - 144n - 2 . 11 + .... - 11n)
= 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n)
Vì 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133 và 133 . 11n ⋮ 133
=> 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133
=> Điều phải chứng minh
CMR: 11n+2+122n+1 chia hết cho 133
CMR:11n+2+122n+1 chia hết cho 133(n E N)
11n+2+122n+1
=121.11n+144n.12
(133-12).11n+144n.12
11n.133-11n.12+144n.12
11n.133+144n.12-11n.12
=11.133+12(144n-11n)
Ta cso 144n-11n : 144-11=133
11.133: 133
Vậy.........
CMR:11n+2+122n+1 chia hết cho 133(n E N)
CMR
a \(11^{n+2}+12^{2n+1}\)chia hết cho 133
b) \(5^{n+2}+26\times5^n+8^{2n+1}\)chia hết cho 59
c \(7\times5^{2n}+12\times6^n\)chia hết cho 19
1, cmr Với mọi x thuộc N luôn có: A(x)=46^x+296.13^x chia hết cho 1947
2,cmr A=220^119^69+119^69^220+69^220^119 chia hết cho 102
B=1890^1930+1945^1975+1 chia hết cho 7
3,cmr:
a,12^2n+1+11^n+2 chia hết cho 133
b,7.5^2n+12.6^n chia hết cho19
c,2.7^n+1 chia hết cho 3
d,21^2n+1+17^2n+1+19 chia hết cho19
e,9^n-1 chia hết cho 4
Sử Dụng phương pháp qui nạp để giải:
1)CMR:9^2n+14 chia hết cho 5.
2)CMR:16^n-15n-1 chia hết cho 225.
3)CMR:4^n+15n-1 chia hết cho 9.
4)CMR:1+2+...+n=n(n+1)/2
5)CMR:11^n+1+12^2n-1 chia hêts cho 133
Ai xong nhanh nhất , chi tiết nhất tự biết rồi đấy!
Mình sẽ tích cho
CMR 11n+2 + 122n+1 chia hết cho 133
b) Với n=1 thì hiển nhiên đúng.
Giả sử mệnh đề đúng với n=k tức:
11k+1+122k-1 chia hết cho 133
Với n=k+1 thì:
11k+2+122k+1=11k+1.11+122k-1.122=11(11k+1+122k-1)+133.122k-1 luôn luôn chia hết cho 133.
Vậy mệnh đề đúng với n=k+1 => dpcm.
tick nha
bạn bấm vào dòng chữ xanh này nhé chứng minh : 11n+2+122n+1 chia hết cho 133