So sánh hai số
\(\sqrt{1991}\)+ \(\sqrt{1993}\)với \(2\sqrt{1992}\)
So sánh \(\sqrt{1991}+\sqrt{1993}\) với \(2\sqrt{1992}\)
\(\sqrt[2013]{2012+\sqrt[2012]{2011+...+\sqrt[1993]{1992+\sqrt[1992]{1991+\sqrt[1991]{1990}}}}}\)Tính D
Gọi 1/4 số a là 0,25 . Ta có :
a . 3 - a . 0,25 = 147,07
a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )
a . 2,75 = 147,07
a = 147,07 : 2,75
a = 53,48
Lập quy trình bấm phím và tính giá trị biểu thức :
B= \(\sqrt[2014]{2013+\sqrt[2013]{2012+\sqrt[2012]{2011+...+\sqrt[1994]{1993+\sqrt[1993]{1992+\sqrt[1992]{1991}}}}}}\)
So sánh
\(\sqrt{1991}\)+ \(\sqrt{1993}\)= A
2.\(\sqrt{1992}\) = B
1. Cho \(A=\sqrt{1991}+\sqrt{1993}\)
\(B=2\sqrt{1992}\)
So sánh A và B.
2. Chứng minh rằng trong các số: \(2a+b-2\sqrt{cd};2b+c-2\sqrt{ad};2c+d-2\sqrt{ab};2d+a-2\sqrt{bc}\)
có ít nhất 2 số dương với \(a,b,c\ge0\)
3. Cho a>c; b>c; c>0
CM: \(\sqrt{c\left[a-c\right]}+\sqrt{b\left[b-c\right]}\le\sqrt{ab}\)
1) Áp dụng bất đẳng thức \(\frac{\sqrt{a}+\sqrt{b}}{2}\le\sqrt{\frac{a+b}{2}}\) (Bạn có thể chứng minh bằng biến đổi tương đương)
Ta có : \(\frac{\sqrt{1991}+\sqrt{1993}}{2}\le\sqrt{\frac{1991+1993}{2}}\)
\(\Leftrightarrow\sqrt{1991}+\sqrt{1993}\le2\sqrt{1992}\)
2) Đề thiếu điều kiện
3) Mình sửa lại đề chút xíu nhé :)
Áp dụng bđt Bunhiacopxki , ta có : \(\left(\sqrt{c}.\sqrt{a-c}+\sqrt{b-c}.\sqrt{c}\right)^2\le\left(c+b-c\right)\left(a-c+c\right)\)
\(\Rightarrow\left(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right)^2\le ab\)
\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le ab\)
1991/1992 + 1 1992/1993 + 1 Hãy so sánh
Tính \(\sqrt[2013]{2012\sqrt[2012]{2011\sqrt[2011]{2010.....\sqrt[1994]{1993\sqrt[1993]{1992}}}}}\)
Ta gán : \(1992\rightarrow D\); \(1992\rightarrow A\)
\(D=D+1:A=D.\sqrt[D]{A}\)
CALC , bấm liên tiếp dấu "=" cho đến khi D = 2013 thì dừng.
Sau đó bấm \(\frac{Ans}{D}\) sẽ ra kết quả cần tính.
\(P=\frac{1}{\sqrt{2}-\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{4}}+\frac{1}{\sqrt{4}-\sqrt{5}}-...+\frac{1}{\sqrt{1992}-\sqrt{1993}}\) là số hữu tỉ hay vô tỉ
Ta có:
\(\frac{1}{\sqrt{n}-\sqrt{n+1}}=-\sqrt{n+1}-\sqrt{n}\)
\(\Rightarrow P=\frac{1}{\sqrt{2}-\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{4}}+...+\frac{1}{\sqrt{1992}-\sqrt{1993}}\)
\(=-\sqrt{2}-\sqrt{3}+\sqrt{3}+\sqrt{4}-\sqrt{4}-\sqrt{5}+...+\sqrt{1992}+\sqrt{1993}\)
\(=\sqrt{1993}-\sqrt{2}\)
Vậy P là số vô tỉ
sao lại biết \(\sqrt{1993}-\sqrt{2}\)là số vô tỉ
1 )So sánh A= 10^1992 +1 / 10^1991+ 1
B= 10^1993 +1/ 10^1992 +1
2) So sánh A=n/n+3 và B =n-1/n+4