Tìm số tự nhiên n sao cho 3n+19 là số chính phương.
Tìm tất cả các số tự nhiên n sao cho 3n + 19 là số chính phương
Đặt \(N=3^n+19\)
Nếu n lẻ \(\Rightarrow n=2k+1\Rightarrow n=3.9^k+19\equiv\left(3-1\right)\left(mod4\right)\equiv2\left(mod4\right)\)
Mà các số chính phương chia 4 chỉ có thể dư 0 hoặc 1
\(\Rightarrow\)N không phải SCP
\(\Rightarrow n\) chẵn \(\Rightarrow n=2k\)
\(\Rightarrow\left(3^k\right)^2+19=m^2\)
\(\Leftrightarrow\left(m-3^k\right)\left(m+3^k\right)=19\)
Pt ước số cơ bản, bạn tự hoàn thành nhé
Tìm các số tự nhiên n sao cho n! +14 là số chính phương
Tìm cá số tự nhiên n sao cho n! + 19 là số chính phương
Cho số tự nhiên An= 3n^2+6n+13(n thuộc N) tìm các số tự nhiên n lẻ sao cho An là số chính phương
Gọi số cần tìm là a
Suy ra (a+2) chia hết cho cả 3,4,5,6
Vậy (a+2) là Bội chung của 3,4,5,6
=>(a+2)=60k (với k thuôc N)
vì a chia hết 11 nên
60k chia 11 dư 2
<=>55k+5k chia 11 dư 2
<=>5k chia 11 dư 2
<=>k chia 11 dư 7
=>k=11d+7 (với d thuộc N)
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)
tìm số tự nhiên n sao cho 2n+1 và 3n+1 là số chính phương
Tìm số tự nhiên n sao cho 2n + 1 và 3n + 1 đều là số chính phương .
tìm số tự nhiên n sao cho a=n^4-2n^3+3n^2-2n là số chính phương
Câu hỏi của Trương Anh Tú - Toán lớp 6 - Học toán với OnlineMath
Nếu n=0,suy ra A=0(thỏa mãn)
Nếu n=1 suy rs A=0(thỏa mãn)
Nếu n>1,ta có
A=n.(n^3-2.n^2+3n-2)
A=n.[n.(n^2-2n+3)-2]
A=n.[n.(n-1)^2+2.(n-1)]
A=n.(n-1).[n.(n-1)+2]
Ta thấy:[n.(n-1)]^2<A<[n.(n-1)+1]^2 (tự chứng minh)
Suy ra A không phải là số chính phương với n>1
Vậy n={0;1}
tìm số tự nhiên n sao cho n^2+3n+5 là một số chính phương
Tìm số tự nhiên n có hai chữ số sao cho 2n+1 và 3n+1 đều là số chính phương
Do 2n + 1 là số chính phương lẻ nên 2n + 1 chia cho 4 dư 1. Suy ra n chẵn.
Do đó 3n + 1 là số chính phương lẻ. Suy ra 3n + 1 chia cho 8 dư 1 nên n chia hết cho 8.
Ta có số chính phương khi chia cho 5 dư 0; 1 hoặc 4.
Do đó \(2n+1;3n+1\equiv0;1;4\left(mod5\right)\).
Mặt khác \(2n+1+3n+1=5n+2\equiv2\left(mod5\right)\).
Do đó ta phải có \(2n+1;3n+1\equiv1\left(mod5\right)\Rightarrow n⋮5\).
Từ đó n chia hết cho 40.
Với n = 40 ta thấy thỏa mãn
Với n = 80 ta tháy không thỏa mãn.
Vậy n = 40.
Tìm số tự nhiên n sao cho: 2n +1 và 3n+1 đồng thời là số chính phương